
COMP254 Project 1: Comparing Vectors and Linked Lists

Brief summary of the assignment:

Write a 3–5 page memo to your (fictitious) colleagues at a small software company, explaining and
justifying your recommendation for using either Vectors or LinkedLists in the implementation of
your company’s massively multiplayer game.

Details of the assignment:

Imagine you are part of a team at a small software company that is developing a new massively
multiplayer game. Every player of the game has an avatar (a virtual person) that participates in the
game's virtual world. One important feature of the game is that it permits very large numbers of avatars
to assemble in the same location in the virtual world; a collection of avatars in the same location is
called a crowd. While some members of your team are working on creating state-of-the-art graphics for
displaying crowds, and others are working on novel techniques for simulating the behavior of crowds,
you have been given the specific task of determining which of two possible data structures will be most
suitable for storing data about large crowds within the application. Although no one in the team really
knows how popular the new game will be, it is hoped that the game will eventually have hundreds of
thousands of avatars. Therefore, the chosen data structure needs to work efficiently for crowds of only
a few avatars up to at least 100,000 avatars.

The application is being written in Java. The team has determined that crowds will be stored using
either the Vector class from the java.util package, or the LinkedList class, also from the
java.util package. It is your job to perform some experiments to investigate whether Vectors or
LinkedLists are more suitable, and write a memo to the other members of your team explaining and
justifying your results.

The code for the Avatar class is given in the following listing:

class Avatar {

 // the age of this avatar in years

 private double age;

 // the height of this avatar in meters

 private double height;

 /**

 * @param age

 * the age of this avatar in years

 * @param height

 * the height of this avatar in meters

 */

 public Avatar(double age, double height) {

 this.age = age;

 this.height = height;

 }

 /**

 * @return the age of this avatar in years

 */

 public double getAge() {

 return age;

 }

 /**

 * @return the height of this avatar in meters

 */

 public double getHeight() {

 return height;

 }

 /**

 * This method is intentionally empty at present. The

 * development team will fill it in later with some

 * useful computations that are used to "process" the

 * current avatar in order to simulate crowd

 * behavior, but for our purposes, it is fine to assume

 * that the "process" method does nothing.

 */

 public void process() {

 }

}

Note the process() method of the Avatar class: some other members of the team are working on
this method, which will compute some interesting crowd behavior based on the avatar's fields. For your
experiments, it is fine to assume that the process() method does nothing. However, the team has
already determined that the avatars in a crowd will need to be processed in FIFO order (i.e. first in, first
out). In particular, the data structure you recommend for storing a crowd will need to support the
following sequence of operations:

1. Create a new crowd, and add a fixed number of avatars to it in a given order.
2. Remove the avatars one at a time from the crowd, in the same order in which they were added,

calling the process() method on each avatar after it is removed from the crowd.

In other words, the Java code for processing a crowd will closely resemble the following method:

 // create a Vector with the given number of elements,

 // and then remove all elements from the Vector one at a

 // time, removing from the *head* of the Vector, and

 // "processing" each element in turn.

 public static void doVectorExperiment(int numElements) {

 // STEP 1. create the list and add elements to it

 Vector<Avatar> vectorCrowd = new Vector<Avatar>();

 for (int i = 0; i < numElements; i++) {

 // the values 22.5 and 1.6 are chosen

 // arbitrarily and have no particular

 // significance for this experiment.

 vectorCrowd.add(new Avatar(22.5, 1.6));

 }

 // STEP 2. remove elements from the head of the

 // list, one at a time, processing each one in

 // sequence

 for (int i = 0; i < numElements; i++) {

 Avatar avatar = vectorCrowd.remove(0);

 avatar.process();

 }

 }

Note that the above method uses the Vector class; your experiments will need to employ an
additional, very similar, method that uses the LinkedList class.

Your memo should be 3–5 pages in length. Any Java code you use for experiments should be included in
the memo as an appendix, but this appendix does not count as part of the suggested length of 3–5
pages. The memo should start with a very clear and concise summary of the task you addressed, and
your conclusions. (You need to describe the task, because not all members of the team will be aware of
the job you were given. You need to summarize your conclusions at the start, because not all of your
colleagues will have the time or inclination to read your entire memo.) Following this summary, you
should give a complete description of your experiments and the reasoning that led to the stated
conclusion. You must give sufficient details that anyone reading the memo could replicate the
experiments. Any data that you use should be presented in a suitable form, such as a table or a graph
(see the additional hints below). At the end of the memo, briefly summarize your conclusions again.

Any reasonable spacing and formatting conventions are acceptable.

To turn in the assignment, submit it to Moodle using any widely-accepted file type, such as PDF,
OpenOffice, or Microsoft Word.

Additional hints:

 The following links may be useful: Java API, LinkedList API, Vector API, System.nanoTime()
(useful for timing experiments), Tutorial on Java generics

 Any timing result should be averaged over enough repetitions to reduce uncertainty to a
sensible level.

 Use a graph or graphs to present your results, and ensure that everything on the graph is
labeled clearly. If appropriate, use a log scale on one or both axes of your graph(s), and explain
the meaning of your results.

 Your document should include not only empirical results (i.e. the actual results of timing
experiments), but also a theoretical analysis that explains the results. Big-O notation should be
used if possible. (Easy challenge to check understanding: describe the performance of the two
methods in BigODemo.java using Big-O notation.) A careful reading of the API links above for
LinkedList and Vector will help with the theoretical analysis.

 You will almost certainly benefit from visiting the Dickinson Writing Center with a draft of your
document. Make an appointment with the Writing Center by calling extension 1620. If possible,
make your appointment with a writing tutor who has a background in the sciences, and is
therefore familiar with the type of technical writing required for this assignment. The Writing
Center has over a dozen tutors with scientific backgrounds, and will be happy to honor your
request for one of these tutors if the schedule permits.

http://docs.oracle.com/javase/7/docs/api/
http://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html
http://docs.oracle.com/javase/7/docs/api/java/util/Vector.html
http://docs.oracle.com/javase/7/docs/api/java/lang/System.html#nanoTime()
http://docs.oracle.com/javase/tutorial/java/generics/index.html
http://users.dickinson.edu/~jmac/courses/fall-2012-comp251/resources/BigODemo.java
http://www.dickinson.edu/academics/resources/writing-program/content/Writing-Center/

