
COMP 356 Homework Assignment 7

Part A (6 points)

1. (3 points) Write a tail-recursive version of the WeirdFactorial function, which is defined as follows:

WeirdFactorial(n) =

{
1 × 3 × 5 × . . .× n if n is odd

2 × 4 × 6 × . . .× n if n is even

2. (3 points) Write a tail-recursive version of the IntegerLog function. IntegerLogb(n) is identical to the
usual log function logb(n) for a number n and base b, except that (i) IntegerLog is defined only for
integers b, n; and (ii) the result is rounded down to the nearest integer. For example:

IntegerLog2(8) = 3

IntegerLog2(20) = 4

IntegerLog5(24) = 1

IntegerLog10(7) = 0

IntegerLog10(100001) = 5

Your solution may only use basic integer arithmetic in Scheme (+,-,*,quotient). You may not use any
other numerical or mathematical operations.

Part B (20 points)

This part of the assignment asks you to implement, in Scheme, an instance of the map-reduce framework
popularized by Google. (Optionally, if you’re interested, take a look at the 2008 paper MapReduce: simplified
data processing on large clusters, by Jeff Dean and Sanjay Ghemawat, in Communications of the ACM, 51(1),
pages 107-113.)

The input will be a corpus of web pages, represented by a Scheme list called webpages. Each element
of this list is itself a list representing an individual web page. Specifically, a web page is specified by a list
of words that occur on the page, in the order that they appear (and with repeats). For example, the input
might be:

(define page1 (list "the" "cat" "sat" "on" "the" "mat"))

(define page2 (list "the" "cat" "sat" "on" "the" "dog"))

(define page3 (list "the" "dog" "sat" "on" "the" "cat"))

(define page4 (list "the" "dog" "sat" "on" "the" "cat" "and" "the" "mat"))

(define page5 (list "the" "cat" "in" "the" "hat" "came" "back"))

(define webpages (list page1 page2 page3 page4 page5))

The ultimate objective will be to compute the three highest-scoring words in the corpus of web pages,
where the score of the words on a page is computed by a Scheme function (score page). The input to
score is a parameter page, which is just a list of words as in the above example. The output is a list of
word-score pairs, one for each unique word appearing on the page. A word-score pair is a two-element list
consisting of the word followed by a non-negative integer, which is the word’s score. The output of score is
guaranteed to be sorted in alphabetical order. Your final program should work correctly with any reasonable
definition of the score function, but you will be given an example for experimentation. The example score

function computes a very simple score for each word: it is the frequency of the word on the page—that is, the
number of times the word occurred on the page. For example, if the word “wombat” has a score of 5 when
this scoring function is applied to a particular page, this means the word “wombat” occurs 5 times on the
page. Hence, the output of the simple frequency-based scoring function on page1 defined above would be

1



(list

(list "cat" 1)

(list "mat" 1)

(list "on" 1)

(list "sat" 1)

(list "the" 2)

)

Your overall task, therefore, is to apply the scoring function to each page and accumulate the results so
that you can compute the three highest-scoring words in the entire corpus, and output those words together
with their scores (sorted in descending order by score). For example, the final output on the above webpages
example should be:

(list

(list "the" 11)

(list "cat" 5)

(list "on" 4)

)

As a hint, note that there are two overall phases in the computation, which the Google paper cited above
describes as the map and reduce phases, respectively. The map phase is particularly easy, since you can use
the built-in Scheme function map to apply the score function to each individual page in the webpages list.
The reduce phase is where you aggregate the data from each individual page into a single list. Finally, you
just need to extract the top three words from the reduced data. Therefore, your final computation might
look like this:

(firstThree (reduceScores (map score webpages)))

Of course, you may need to define several helper functions in addition to writing the firstThree and
reduceScores functions.

For full credit, your solution must use a functional style of programming. Do not use imperative data
structures such as hash tables. Use only simple functional data structures such as lists, and lists of lists.
You are permitted to use the built-in sort function to sort your lists.

Submit all code for this assignment (Parts A and B) as a single archive file (zip, tar, or similar) to Moodle.

2


