
COMP 356
Programming Language Structures

Class 11: Parsers (Section 4.5 of Concepts of Programming Languages)

Acknowledgment: These notes are based closely on an earlier version by Tim Wahls.

1 Overview of parsing algorithms

The parser (or syntactic analyzer) of a compiler organizes the stream of tokens (from the
scanner) into parse trees according to the grammar for the source languages.

All grammars used in designing parsers must be unambiguous. However, as we will see below,
the automatic parser generator we will use (called CUP) allows you to use an ambiguous BNF
grammar, provided you give it some extra rules, called disambiguating rules. The disambiguating
rules specify which choices to make when constructing the parse tree. Of course, the combination
of the BNF and the disambiguating rules are equivalent to an unambiguous grammar, but the
approach using disambiguating rules turns out to be easier.

Parsing algorithms that can parse any unambiguous BNF grammar are O(n3), where n is the
length of the string being parsed. One well-known algorithm to achieve this is the Cocke-Younger-
Kasami (CYK) algorithm (it has a good Wikipedia page, if you’re interested in learning more about
it.)

Commercial compilers use O(n) (linear) parsing algorithms that can handle specific classes of
grammars, called LL(1) and LR(1) grammars. These grammars are sufficient to describe the syntax
of the vast majority of programming language features.

Parsers are classified as:

• top-down parsers, which build parse trees from the root to the leaves. These parsers are
designed using LL(1) grammars.

• bottom-up parsers, which build parse trees from the leaves to the root. These parsers are
designed using LR(1) grammars.

Bottom-up parsers build parse trees from the leaves to the root. The idea is to use the grammar
rules “backward” - the parser matches against the R.H.S. of grammar rules and when some rule is
matched, it is used to construct a subtree with the R.H.S of the rule as the children and the L.H.S.
as the root.

A bottom-up parser uses a stack to keep track of the parse. At each parsing step, there are two
possible actions:

• shift - push the next token from the input onto the stack

• reduce - if the sequence of grammar symbols on “top” of the stack matches the R.H.S. of a
grammar rule, pop them all and replace them with the L.H.S. of that rule.

The parser is controlled by a table generated from the grammar. The tables are too large and
complex to construct by hand, and so are generated using a tool such as yacc or CUP (in this
course, we use CUP).

Bottom-up parsers are also called LR parsers, because they parse LR grammars.
The parsers generated by yacc and CUP are LALR(1) parsers, where LALR(1) stands for

Look-Ahead LR(1). These parsers are less powerful than LR parsers, because

1

LALR(1) grammars ⊂ LR grammars.

But the loss of parsing power is small and the parse tables for LALR(1) parsers are much smaller
than those for LR parsers.

If the grammar used as input to yacc or CUP is ambiguous or otherwise not LALR(1), these
tools will report parsing conflicts as error messages. The possible conflicts are:

• shift-reduce conflicts - at some step, the parser can’t tell whether to shift a token onto the
stack or do a reduction.

• reduce-reduce conflicts - at some step, the parser can’t tell which of two reductions to
perform. This can occur when two rules in the grammar have identical R.H.S.’s, but different
L.H.S.’s.

2 Our objective: compute the value of calculator expressions

Last time, we implemented a scanner. The input to the scanner was a string like “2+3.1;”, and
the output was a list of numeric token codes together with actual values of the tokens:

token 4, value 2.0

token 1, value +

token 4, value 3.1

token 6

Today, we go much further, by implementing a parser for an attribute grammar. The attribute
grammar will have a single synthesized attribute called calcVal (which is an abbreviation of “calcu-
lator value”). The idea is that the parser can compute the calcVal of every node in the parse tree,
starting at the leaves and working its way to the root. The calcVal of the root should correspond
to the numeric value that a real calculator would compute when given the input expression. For
example, “2+3.1;” should result in the calcVal 5.1. And “2*(3+5);” will proceed in two steps: (i)
the parent node of the leaves “(3+5)” gets the calcVal 8, then (ii) the root node gets the calcVal
16.

The parser for computing calcVal will be generated automatically from the specification of an
attribute grammar, by a program called CUP. (CUP is an acronym for Construction of Useful
Parsers.)

3 Using CUP

3.1 How to run CUP

CUP generates an LALR(1) parser (in Java) from an attribute grammar specification:

• this approach works well with synthesized attributes

• each time a rule is used in a reduction, the attribute of the L.H.S. of the rule is computed
(via user-specified Java code) from the attributes of the R.H.S.

• bottom-up parsing ensures that the attributes of the R.H.S. are available when needed.

2

JFlex scanners can easily be made compatible with CUP parsers.
A CUP specification is placed in a file with extension .cup. For an example, see the provided

file example.cup. To generate parser code, use the command

java -cp cup.jar:. java_cup.Main example.cup

(Recall from the previous lecture that “-cp cup.jar:.” sets the Java classpath correctly on a
Mac. On Windows, use “-cp cup.jar;.”. In the remainder of this document, we assume you are
on a Mac.)

The above command generates the following two files:

• parser.java, which contains the parser code

• sym.java, which contains definitions of all of the tokens used as integer constants. These
must match the tokens used in the scanner. (Note that in our previous lecture, sym.java was
produced manually as part of the demo of JFlex. When you run the above command, a new
version of sym.java is automatically generated.)

To compile and run the parser:

1. You need to have already produced some scanner code (Yylex.java) using JFlex, as described
in the previous lecture.

2. Ensure that Yylex.java is in the same directory as parser.java and sym.java.

3. Compile by executing:

javac -cp cup.jar:. parser.java

4. Run the parser by executing:

java -cp cup.jar:. parser < input.txt

where input.txt is the file containing the source program.

Alternatively, to enter the source program directly from the keyboard, just enter:

java -cp cup.jar:. parser

and then type the source program and press Ctrl-D (Mac/Linux) or Ctrl-Z (Windows) when fin-
ished.

3.2 Format of a CUP specification file

The format of a CUP specification file is given by
imports
directives
declarations of tokens and nonterminals
grammar rules and actions

For an example, see the file example.cup on the course resources page.
The imports are copied directly to the beginning of the generated code in parser.java. For

example,

3

import java_cup.runtime.*;

is usually placed here to provide access to the needed library classes.
The directives supply user code to be placed in the indicated class in the generated code. For

example:

parser code {: code :}

causes the code in the special brackets {: :} to be placed in class parser.
In the declarations of tokens and nonterminals section, all grammar symbols are declared as

follows:

• The name used for a token must match the name assigned to the sym field of class Symbol

when that token is recognized by the scanner.

• If a token has an attribute (placed in the value field of class Symbol by the scanner), the type
of that token must be declared and must match the attribute value assigned by the scanner.

• If a nonterminal has an attribute, the type of that attribute must also be given. The majority
of nonterminals will have attributes.

• By convention, token names are in all caps and nonterminal names are all lowercase. Note
that nonterminal names are not put in angle brackets, 〈 〉.

This section also includes any specifications of associativity and precedence of tokens. These
specifications are actually disambiguating rules and permit parsing of many ambiguous grammars
when used appropriately. The syntax of these specifications is:

precedence 〈spec〉 terminal {, terminal};

where:

〈spec〉 → left | right | nonassoc

The 〈spec〉 specifies associativity. If a token is declared as nonassoc, then it can not occur mul-
tiple times in one expression. For example, 1 < 2 < 3 is illegal in many programming languages.

Precedence rules:

• all tokens listed in the same declaration have the same precedence.

• if there are multiple precedence declarations, later declarations have higher precedence.

• all tokens not listed in a precedence declaration have lowest precedence

For example:

precedence left ADDOP

precedence left MULOP

declares that MULOP has higher precedence than ADDOP, and that both are left associative.
In many cases, these precedence and associativity declarations can be used to remove shift-

reduce and reduce-reduce conflicts from the grammar.
The grammar rules and actions section is an attribute grammar for the language being parsed:

4

• the L.H.S. of the first rule is the start symbol

• the symbol ::= is used in place of →

• nonterminal names are not in 〈 〉 (the declarations specify which names are nonterminals and
which are tokens)

• each rule ends in ;

• each symbol on the R.H.S. of a rule can be labeled using : and a name. For example,
expr:l ADDOP:op expr:r, where l, op and r are labels

• for tokens, the label is used to refer to the intrinsic attribute assigned by the scanner (stored
in the value field of the Symbol)

• for nonterminals, the attribute value is computed using actions associated with each rule

• the attribute of the L.H.S. of the rule is always RESULT

The actions associated with each rule:

• are in special brackets {: :}

• contain Java code that can refer to attribute labels and RESULT

• typically compute the value of RESULT based on the attribute values of the grammar symbols
on the R.H.S. of the rule. Hence, the attributes are synthesized attributes.

• are executed each time the rule is used in a reduction

• can easily be used to build parse trees or do other computations.

3.3 Summary of commands for JFlex and CUP

The commands needed to compile and run a CUP parser with a JFlex scanner are as follows,
assuming the following files are all in the current directory:

• the JFlex specification, example.lex

• the CUP specification, example.cup

• the source program, input.txt

• the JAR file, cup.jar, which contains the JFlex and CUP programs

command comment

java -cp cup.jar:. JFlex.Main example.lex creates Yylex.java

java -cp cup.jar:. java_cup.Main example.cup creates sym.java and parser.java

javac -cp cup.jar:. parser.java compiles everything

java -cp cup.jar:. parser < input.txt runs the parser

Table 1: Commands needed to compile and run a CUP parser with a JFlex scanner.

To add tokens, you must declare them in the .cup file and also add actions to the .lex file
to recognize and return them. Also, you must run CUP (to generate constant declarations for the
new tokens in sym.java) before recompiling anything.

5

4 In-class exercise: adding “repeat” functionality to the calculator

This exercise asks you to add some slightly silly functionality to the calculator, but it will demon-
strate many of the concepts you need to understand.

The task is to add functionality that repeats the digits of a given integer before evaluating the
integer as a number. The repeat functionality will be triggered by the letter “r”. For example,
if the calculator encounters r235 in an expression, this will be interpreted as the numerical value
235235. As a further example, a complete input consisting of “3.5 + r5;” would evaluate to 58.5.

The steps required to complete this exercise are as follows:

1. Download the required files (they are all in calculator.zip) and run all the commands in Ta-
ble 1. Edit input.txt and verify that the calculator can handle expressions like “3*(2.5+1.5);”.

2. Add a new regular definition in example.lex. Specifically, define a new regular expression
called “REPEAT” immediately after the line beginning “NUM”.

3. Add a new action in example.lex. Specifically, add a line after the line beginning “{NUM}”,
returning a new symbol for matches to the REPEAT regular expression. I recommend using
a String as the datatype of the value for this symbol.

4. You have finished modifying example.lex, so now run JFlex to check there are no errors.

5. Add a new terminal called REPEAT, in example.cup. Do this by adding a line after the line
“terminal Double NUM;”.

6. Add a new rule to the grammar in example.cup. Specifically, add a new line after the line
containing “NUM:n”. The line should start with “| REPEAT”. Hints: the Java code that
appears between the “{:” and “:}” will need to use (i) the substring method of the String
class; (ii) string concatenation; and (iii) the constructor for Double that takes a single String
argument.

7. Run all the remaining commands (see Table 1 above). Check that inputs such as “r235;”
and “3.5 + r5;” are evaluated correctly.

6

