2. Getting Started
44
i i lication
ally do not need abs-all however, since the corresponding direct app
We really do ns ;
of map is just as short and perhaps clearer.

(map abs *(1 -23-45 -8)) = (12345 8)

O1LISe we ¢an use 1a.mbda bo Ieate t [] ed re m p .g.
Of C he T0C n aIgumeIlt tv() a c 3 tr()
c b bl

square the elements of a list of numbers.

(lambda (x) (* x X))
o= (1 -3 -5 73y = (1925 48)

.] . i - .
€ can l) p = g 3 p]. 3 S g
‘M ma a m]]l‘t] le ar]]ment pl_‘o[:ed“re over I“]]H‘,‘] e IIS (S, a5 11 i he h) OWInN

example,

(12 3)) =
(map cons ’(a b ¢) S
lists must be of the same length, and the procedyre_ niistr:scsﬁpof iy
e St there are lists. Each element of the output list is the
arguments as] : s
thi procedure to corresponding members of the input lis i be able o derive
Looking at the first definition of abs-all above, you sho D0 e e thot
befi o tugying it. the following definition of mapl, & restricted ¥ _
ore 8 , ! :
N s a one-argument procedure over a single list.

(a » 1) (. 2} (c . 3))

map

(definé mapl
(lembda (p 1s)
(if (null? 1s)
o (1s))
(p (car 1ls
foone (niapi p (cdr 18)))))) -

12345 86)

1 W h. Ve dOIle =} tO re p]. ace trh.e C a:l]. tO abs 11 & bs—a 1 wr tlh. C a.l]. tO th.e new
(5]

parameter p. A definition of the more general

(mapl abs *(1 -2 3 —4 5 -6) = (

map is given in Section 5.4.

Xerclse . € 1be W t & cn 1 O w1 h.e bh.e OIdeI ()f trh.e

arguments to cons in the definition of tree-copy.

ipti d and define a
l ‘ i for the description of appen
i .8.2. Consult Section 6.3 ‘ ; . e e
f}xeras\;l:nt version of it. What would happen if you sw1tch3crl? the o '
—a.r . - .y . 7
a:rgumints in the call to append within your definition of appen

~1list, which takes a nonnegative integer

Exercise 2.8.3. Define the procedure make e e e the object.

n and an object and returns s new list, » long,

(make-list 7 Q) = (O O 00000

2.9. Assignment .

[Hint: The base test should be (= n 0}, and the recursion step should involve
(- n 1). Whereas () is the natural base case for recursion’ on lists, 0 is the natural
base case for recursion on nonnegative integers. . Similarly, subtracting 1 is the
natural way to bring a nonnegative integer closer to 0.]

Exercise 2.8.4. The procedures list-ref and list-tail return the nth element
and nth tail of a list [s.

(list-ref *(1 23 4) 0) = 1

(list-tail (123 4) 0) = (123 4)

(list-ref ’(a short (nested) list) 2) = (nested) _
(list-tail ’(a short (nested) list) 2) = ((nested) list)

Define both procedures.

Exercise 2.8.5. Exercise 2.7.2 had you use length in the definition of shorter,
which returns the shorter of its two list arguments, or the first if the two have
the same length. Write shorter without using length. [Hini: Define a recursive
helper, shorter?, and use it in place of the length compatison.]

Exercise 2.8.6. All of the recursive procedures shown so far have been directly
recursive. That is, each procedure directly applies itself to a new argument. It
is also possible to write two procedures that use each gther, resulting in indirect

recursion. Define the procedures odd? and even?, each in terms of the other. [Hint:
What should each return when its argument is 07]

(even? 17) = #f
(0dd? 17) = #t

Exercise 2.8.7. Use map to define a procedure, transpose, that takes a list of pairs
and returns a pair of lists as follows.

(transpose "((a DB L2 (c.3)) = ((abe)t23)

[Hint: ((a b c) 12 3)isthesameas ((abc) . (12 3]

2.9. Assignment

Although many programs can be written without them, assignments to top-level
variables or let-bound and lambda-bound variables are sometimes useful. Assign-
ments do not create new bindings, as with let or lambda, but rather change the
values of existing bindings. Assignments are performed with set!.

