COMP 356
Programming Language Structures
Additional Prolog notes

These notes provide some background on several small additional topics, which may help with
the homework.

1 Comma notation in list heads

We already discussed the meaning of Prolog fragments like [A|B]. This notation can be extended
using commas to match multiple items at the head of the list. For example, [A,B|C] matches a
list whose first two elements are A, B, with the remainder of the list being C.

2 The “not proven” operator

The Prolog operator \+ negates the meaning of its argument. But it’s not the same thing as the
Boolean operator ! in C or Java. For example, the query \+(student (sophie)) will terminate
with “success” or “true” if the system cannot prove that Sophie is a student. If the system can
prove that Sophie is a student, this query terminates with “failure” or “false”. Important notes:

1. You need to be especially careful when using \+ with variables. For certain technical rea-
sons that will not be covered in this course, \+ should only be used with variables that
have already been assigned a value. So an expression like \+(student (X)) should only be
used after some other expression that will have already assigned a value to X. For example,
takingCourse (X,proglang), \+(student (X)) is acceptable, because Prolog will always as-
sign some value to X in takingCourse(X,proglLang) before moving on to prove the goal
\+(student (X)). In practice, this means you should put \+ clauses at the end of any rule.

2. Many Prolog systems permit the use of a built-in relation not () in place of \+. In particular,
the examples in the textbook use not (). However, XGP does not permit this, so you will
need to use \+ instead of not ().

3 Numerical comparisons

Various numerical comparison predicates are built into Prolog. For this course, the only ones we
need are “<” and “>”, which have their obvious meanings.

4 More sophisticated data structures

Prolog is capable of representing sophisticated data structures. As a simple example! of this, the
code given in Figure 1 can be used to represent, manipulate, and query a sorted binary tree that
stores a single integer data value at each node. The basic idea is to define a relation node(L,
D, R), where L represents the left child of the node (which could be the special value empty), R
represents the right child of the tree, and D represents the data value stored at the node. Please
see the accompanying file tree.pl to experiment with these definitions.

I This example is based closely on Professor Wahls’ lecture notes.



/* relation to check whether some value occurs in the tree */
isin(K, node(_, K, _)).

isin(K, node(L, D, R)) :- K < D, isin(X, L).

isin(K, node(L, D, R)) :- K > D, isin(K, R).

/* adding a node at the proper position in the tree with no attempt at
balancing the tree */

insert (K, empty, node(empty, K, empty)).

insert (K, node(L, D, R), node(L2, D, R)) :- K < D, imsert(K, L, L2).

insert (K, node(L, D, R), node(L, D, R2)) :- K > D, imsert(X, R, R2).

/* do an inorder traversal of the tree, accumulating the node values in
a list */
inorder (empty, []).
inorder(node(L, D, R), Z) :- inorder(L, LL), inorder(R, RL),
append(LL, [D], Z1),
append(Z1, RL, Z).

Figure 1: Prolog code for a sorted binary tree storing integers.



