Contents

Preface
1 OQverview of Scheme

1.1
12
1.3
14
1.5
1.6
1.7
- 18
1.9

Introduction

Scheme and LISP

Scheme Programming Environments
Standard Scheme

Functions versus Subroutines

List Processing

Function Syntax

((«omy
Symbolic Processing

1.10 PC Scheme and the Listener

Exercises

2 Scheme Basics

21
22
23
2.4

2.5

Introduction

The Scheme Listener

Simple Arithmetic

Lexical Components

2.4.1 Whitespace and Comments

2.4.2 Constants

2.4.3 Identifiers

2.4.4 Literal Expressions

2.4.5 Others

Atoms, Lists, Forms, and S-expressions
Excrcises

N O S RIS ~ )

—_
o o



6 Overview of Scheme

to embed a function call almost anywhere in a program is a powerful feature. The func-
tional nature of Scheme is one of its most distinguishing characteristics. Functions are
also addressed later,

1.6 List Processing

Another distinguishing feature of Scheme (LISP) is its facility for list processing.
Whereas languages such as C and Pascal require the programmer to write a library of
routines for linked list manipulation, Scheme provides a host of language primitives for
list processing. In general, the Scheme programmer uses the list as an abstract data
type, whereas the Pascal programmer must build such structures and accompanying
routines with pointer variables and pointer manipulators.

As mentioned, the list data structure is central to Scheme. A list is formed by
enclosing any number of items within matching left and right parentheses. For ex-
ample, the following are two Scheme lists:

(+ 2 34
(a b c)

The first is composed of three items: a plus sign, the number 2, and the number 34.
The most likely interpretation of this list is as a function call to the addition operator

with two arguments, in which case the value 36 would be returned. Note that Scheme

is a prefix language, that is, the operator is specified before the operands. There are
several advantages to this, most of which are associated with language and program-
ming flexibility. For example, a varying number of arguments is easily accommodated.
That is, only one addition operator is needed to sum four numbers:

(+ 123 4)

whereas in an infix-based language, such as Pascal, multiple addition operators are re-
quired. '

three items. But Scheme allows us to define additional mnemonics for primitives. Al-
though it has little mnemonic value, the “a” could represent the primitive “add”, that
is, the addition operator. In this case, “b” and “c” would most likely represent vari-
ables.

1.7 Function Syntax

A Scheme program is composed of one or more functions, and each function is com-
posed of lists (possibly nested). Typically, lists contain either data, variables, or the
names of other functions. For example, the following Scheme code defines a function
that squares a number:

All we know about the second list, (a b ¢), out of context, is that it is composed of

1.8 ((((CCcOMM) !

{define (square n) (* n nj)

The first item is define, which is a Scheme keyword that signals the definition of
new identifiers, in this case, a function. Scheme syntax prescribes a prefix-like
specification. The second item, a list, names the new function and specifies its
parameters —in this case, one parameter, n. Subsequent items constitute the function
body. In this case, square is defined to be the multiplication of a number, the argu-
ment/parameter, n, by itself,

In the previous function there is no need to specify which function is the “main”
function and which functions are subordinate; this issue is resolved at execution time.
That is, whether or not square will be used by itself, or called by some other function,
is immaterial at the time of its creation. In this sense, all functions are created equal.
Thus, the programmer is free to think about a function’s function, and is less burdened
by syntax. In contrast, interacting Pascal subprograms must be arranged in the proper
order before compilation. Scheme programmers never have to worry about such syn-
tactic issues during program development.

Note that user-defined functions can have a variable number of arguments; they
are defined by a syntactic structure which accommodates a varying number of “argn-
ments;” and the function call “(square n)”, that is, its usage, is identical to its specifica-
tion in the call to define. Hence, there is a degree of symmetry and consistency in
Scheme that is lacking in many other languages.

1.8 (((LLCOMM)

Scheme employs parentheses to define the bounds of a list. Although nested paren-

-theses can be cumbersome, most langnages have syntax-related language components

that can be awkward. Moreover, most Scheme systems provide direct assistance with
parentheses balancing, ,

As mentioned, both data and functions are specified in list form. This has many
advantages. One of the most important advantages is that it allows programs to create
other programs, and this is an especially powerful feature for Al programming. This
power is completely absent from many “syntax-bound” languages, such as C, Pascal,
and PL/I, and is not readily appreciated by those new to LISP programming,

1.9 Symbolic Processing

Scheme (LISP) differs from other languages in its facility for working with symbols. In
more traditional languages we think of identifiers as symbols. In fact, the term “sym-
bol table” is used for the compiler’s temporary array of identifier information. Aswith
other languages, Scheme variables and procedures exist as symbols; but in addition,
Scheme provides a facility for processing alternative symbols, namely, symbols that are
not assigned a value. ‘



