
Exam 1, Computer science 356, Fall 2014

Time allowed: 75 minutes. Total points: 75.

Name:

Question 1. (30 points) — 1 point for each answer. Circle “T” for true, and “F” for false.

In C, the keyword for is both a token and a lexeme. T F

Let L be a language that is not ambiguous. Then every string in L has a unique
derivation.

T F

Let L′ be an ambiguous language, and suppose string s ∈ L′. Then s has at least two
distinct parse trees.

T F

In C++, output parameters can be implemented using both pointers and references. T F

In C, malloc allocates memory on the heap. T F

While a C++ program is running, the operating system performs garbage collection on
behalf of the program.

T F

The EBNF rule 〈x〉 → 〈y〉[(a|b)]〈z〉 is equivalent to the BNF rule
〈x〉 → 〈y〉〈z〉 | 〈y〉a〈z〉 | 〈y〉b〈z〉 T F

Consider the C function f() defined by
void f(double *y) { double *z = y; double w = *z; }

The function f() causes a memory leak.

T F

The function f() in the previous question could cause a segmentation fault due to an
illegal memory access.

T F

In C, x[4] and (*x+4) always produce the same result. T F

In C, suppose that a union u contains exactly 2 fields: a float and a double. Then
sizeof(u) equals sizeof(float)+sizeof(double).

T F

Consider the following sequence of C++ statements:
int** x = new int*[3];

x[0] = new int(5);

x[1] = new int(8);

delete x[0];

delete x[1];

delete x[2];

delete [] x;

This code produces a memory leak.

T F

The code in the previous question could cause a segmentation fault due to an illegal
memory access.

T F

The following C++ snippet is an example of ad hoc polymorphism:
int countObjects(Bird bird) { ... }
int countObjects(Fish fish) { ... }

T F

The snippet in the previous question is an example of overloading. T F

1

According to the technical definition of language used in this course, the set of all
integers (written in decimal notation, as in “5523”) is a language.

T F

Every language can be represented by a BNF grammar. T F

Suppose the language L can be represented by two distinct BNF grammars. Then at
least one of these grammars is ambiguous.

T F

In an attribute grammar, the value of an intrinsic attribute typically depends on the
value of inherited attributes.

T F

In C, “int* x;” and “int *x;” mean the same thing. T F

In C++, structs can be placed either on the stack or on the heap. T F

Suppose we are compiling our C++ on a 64-bit machine. (So pointer data types occupy
64 bits.) Consider a function with the signature int g(char* c). The total size of the
parameter passed to this function is 8 bytes.

T F

As in the previous question, assume we are using a 64-bit machine. This time consider a
function with the signature int g(char &c). The total size of the parameter passed to
this function is 8 bytes.

T F

Consider the C program given in Figure 1 below. The output of this program is “cbc”. T F

Again consider the C program given in Figure 1, and assume it is compiled for a machine
on which ints occupy four bytes. Then the size of the data type U is five bytes.

T F

Consider the following snippet of C code: int a = 6; int b = 8; int &c = a; int d

= c; c = 3;. After this snippet has been executed, the value of a is 3.
T F

Consider the same snippet as in the previous question. After the snippet has been
executed, the value of d is 3.

T F

In C++, declaring a function f virtual in a base class imposes a small performance
penalty on any functions that override f in derived classes.

T F

In C++, declaring a function f virtual in a base class imposes a small performance
penalty on calls to f by instances of the base class.

T F

In Java, suppose a class Wombat has been defined with a default constructor. Then the
snippet “Wombat w = new Wombat()” causes a wombat object to be placed on the stack.

T F

#include <stdio.h>

typedef union {

char x;

int y;

char z[5];

} U;

int main(int argn, char** argv) {

U u;

u.y = 54321;

u.z[0] = ’a’;

u.z[1] = ’b’;

u.x = ’c’;

printf("%c%c%c\n", u.z[0], u.z[1], u.x);

}

Figure 1: A C program referred to by the true/false questions.

2

Question 2. (5 points) In his 1968 letter to the editor of CACM, Dijkstra suggests that goto

statements could be useful for “alarm exits”. What did he mean by this?

Question 3. (10 points) Prove that the following grammar is ambiguous.

〈X〉 → a b 〈Y〉 e | 〈Z〉 c d e
〈Y〉 → c d | d e
〈Z〉 → a b | b c

3

Question 4. (10 points) In your own words, explain the circumstances under which it is a good
idea to declare a C++ member function virtual, and give a brief reason for your answer.

Question 5. (5 points) Consider the C program below. Fill in each of the spaces marked “___”
with exactly one of the symbols x, y, z, so that the code will compile without errors. (You may
not use other expressions like &x or *x.)

void f1(int x) { x++; }

void f2(int* x) { x++; }

void f3(int* x) { (*x)++; }

void f4(int& x) { x++; }

void f5(int** x) { (*x)++; }

int main(int argn, char* argv[])

{

int x;

int* y = &x;

int** z = &y;

x = 5; f1(___); cout << x << endl;

x = 5; f2(___); cout << x << endl;

x = 5; f3(___); cout << x << endl;

x = 5; f4(___); cout << x << endl;

x = 5; f5(___); cout << x << endl;

}

Question 6. (5 points) What is the output of the program in the previous question? (You should
assume all the spaces marked “___” have been filled in appropriately.)

4

Question 7. (a) (5 points) What is the output of the program printed below?

(b) (5 points) By writing directly on the code, fix all memory leaks in the program below.

#include <iostream>

#include <string>

using namespace std;

class A { public:

int* x;

A(string s) {

x = new int;

*x = s.length();

}

virtual ~A() { }

virtual int getX() { return *x; }

};

class B : public A { public:

int** yy;

int z;

B(int z) : A("confused!") {

this->z = z;

yy = new int*[z];

for(int i=0; i<z; i++){

yy[i] = new int[z];

yy[i][0] = 25;

}

}

~B() {

for(int i=0; i<z; i++) {

delete [] yy[i];

}

}

int getX() { return yy[0][0]; }

};

int main(int argn, char* argv[])

{

A* a = new A("abc");

A* b1 = new B(5);

B* b2 = new B(5);

cout << a->getX() << endl;

cout << b1->getX() << endl;

cout << b2->getX() << endl;

delete a;

}

5

Bonus question. (This question is worth only two points of extra credit. Do not attempt it unless
you have finished and checked your answers to all other questions.)

Explain in words what output would be produced by the extra line of code

cout << y << endl;

at the end of the main() function in Question 5.

6

