
The following are informal notes that I will be using as reference material for my whiteboard lecture.
They are not intended to be comprehensive or even to be understandable in isolation. However, I am
making them available so that you don’t need to write everything down while I am giving the lecture.
The primary and authoritative resource for today’s material is the textbook, sections 15.5.8-11 and 6.9.

[Finish basics from last time. Then...]

1. Functions as first-class objects, and lambda expressions

Functions can be used as variables, parameters etc. (this is often stated as "functions are first-class
objects")

(define (eval-at-5 f) (f 5))

(eval-at-5 add1)

Challenge: create a function called "increasing" that accepts a single function f as a parameter, and
returns true if f(0) < f(1) < f(2), otherwise returns false.

Solution:
(define (increasing f)

 (and (> (f 1) (f 0))

 (> (f 2) (f 1))))

Test it:
 (increasing add1)

Challenge: we have seen how to use a function as a parameter. How can we use a function as a return
type? For example, try to define a function "add-something", which takes a single integer parameter x,
and returns a function whose effect is that y->y+x.

Solution: We can't do it without using lambda expressions.

Here is the solution:

(define (add-something x)

 (lambda (y) (+ y x)))

test it:

((add-something 10) 5)

(define add10 (add-something 10))

(add10 3)

2. Lists

Lists are the most commonly used data types in scheme. They are created with the "list" function:

(list 2 4 6 8)

car returns the first element, cdr returns the remainder:

(car (list 2 4 6 8))

(cdr (list 2 4 6 8))

Challenge: what is (car (cdr (list 2 4 6 8))) -- work it out without entering it!!

[Mention etymology briefly]

Can combine these up to a ridiculous number of a's and d's, e.g.

(cadddr (list 2 4 6 8))

Add element to the start of a list using cons (for "construct"):

(cons 5 (10 15 20))

In some Lisp dialects the empty list is represented by (), but in our dialect it is either empty or null or
'() . The single-quote will be explained soon

Lists can be nested:

(list (list 60 70) 4 5 (list 20 30) 6 7)

challenge:

 what is (car (list (list 60 70) 4 5 (list 20 30) 6 7))?

 what is (cdddr (list (list 60 70) 4 5 (list 20 30) 6 7))?

A list containing the empty list is not the same thing as the empty list:

(equal? (list empty) empty)

3. quote

To use an expression as data, without evaluating it, use (quote) -- and this can be abbreviated as a
single quote: '

(quote a)

'a

(quote (a b c))

'(a b c)

4. let

let allows you to define something similar to local variables

[Java style]
int x = 5;

int y = 2;

return x + y;

[Scheme style]
(let ((x 5)

 (y 2))

 (+ x y))

letrec is a recursive version of let which permits later expressions to depend on earlier ones. (The
only disadvantage is that it's a little less efficient.)

[Java style]
int x = 5;

int y = 2;

int x2 = x * x;

int y2 = y * y;

return x2 + y2;

[Scheme style]
challenge: do it yourself

Of course, you can define functions within let and letrec too:

Challenge: what is the output of the following (without typing it in)?:
(letrec ((x 5)

 (y 2)

 (x2 (* x x))

 (y2 (* y y))

 (f (lambda (v w) (+ v w))))

 (f x2 y2))

5. loops

These don't exist. Seriously -- no "while" or "for". Use recursion instead.

6. recursion

[Java style]
int start = 0;

int stop = 5;

for(int i = start; i < stop; i++){

 System.out.println(i);

}

[Scheme style]
(define (print-numbers start stop)

 (if (not (= start stop))

 (begin

 (display start)

 (newline)

 (print-numbers (add1 start) stop))

 (newline)))

(print-numbers 0 5)

A less silly example:

[Java style]
int start = 0;

int stop = 5;

int sum(int start, int stop) {

 int total = 0;

 for(int i = start; i < stop; i++){

 total += i;

 }

 return total;

}

[Scheme style]
(define (sum start stop)

 (letrec

 ((sum-helper

 (lambda (total start stop)

 (if (not (= start stop))

 (sum-helper (+ total start) (add1 start) stop)

 total))))

 (sum-helper 0 start stop)))

(sum 0 5)

