Chapter 5 Names, Bindings, and Scopes

Consider the following JavaScript function, big, i which the two func-
tions subl and sub2 are nested:

function big() {

function subl() {
var X = 7;
gub2 () ;

}

function subz () {
var ¥ = ¥i

}

var X = 3i

gubi ()

}

Under static scoping, the ceference to the variable x in sub? is to the x decla
in the procedure big. This is true because the search for x begins in the pigg
cedure in which the reference occurs, gub2, but no declaration for x is fo
there. The search continues in the static parent of sub2, big, where thed
Jaration of x is found. The x declared in subl is ignored, because it is

the static ancestry of sub2.

In some languages that use static scoping, regardless of
subprograms are allowed, some variable declarations can be hidden from Sek
other code segments. For example, consider again the JavaScript fimctio
The variable x i8 declared in both big and in subl, which is nested insid
Within subl, every simple reference to x 18 to the local x. Therefore, the
« is hidden from subl.

In Ada, hidden variables from ancestor scopes can be accessed W
tive references, which include the ancestor scope’s name. For exampiEy
previous example function big were written in Ada, the x declare
could be accessed in subl by the reference big.X.

Blocks

Many languages allow new static scopes 0 be defined in the mids
able code. This powerful concept, introduced in ALGOL 60, allows
of code to have its ownl local variables whose scope is minimized
ables are typically stack dynamic, so their storage is allocated when
is entered and deallocated when the section is exited. Such a se¢
i called a block. Blocks provide the origin of the phrase bloc
language.

The C-based languages allow any compound statemen?
sequence surrounded by matched braces) to have declaration:
define a new scope. Such compound statements are called blocks
£ 1ist were ap integer array, One could write




