
COMP 356
Programming Language Structures

Notes for Classes 1 and 2 (Chapter 3 of Concepts of Programming Languages)
Syntax and Semantics

Acknowledgment: The majority of these notes were written by Prof. Tim Wahls; however, some
significant changes have been made.

1 Introduction: why study the structure of programming lan-
guages?

The theory of computability tells us that all modern programming languages are Turing complete.
In other words, these languages can be used to solve exactly the same set of problems (the set
of computable problems). In fact, some surprisingly minimal subsets of a language are Turing
complete (e.g. if and goto are sufficient; if and while are sufficient).

So, (1) why would we ever need more than one programming language? And (2) why would we
bother to study the implementation of and differences between programming languages?

Possible answers to (1) include:

• different languages make it easier or harder to achieve certain tasks. Examples?

• different languages achieve different performance for certain tasks. Examples?

Possible answers to (2) include:

• Understanding implementation of a language can help improve the quality of the programs
you write in that language. Examples?

• Understanding different languages broadens your selection of problem-solving techniques.
Examples?

• Various practical advantages e.g. Knowing several languages makes you more attractive to an
employer; you can select an appropriate language for a given task.

• Some fundamental ideas in the theory of computer science (e.g. recursion, abstraction) are
reflected in the design of some languages. Examples?

See Section 1.1 of the textbook for some more detailed discussion.

2 Syntax and semantics overview

Definitions:

• syntax is the form (structure, grammar) of a language

• semantics is the meaning of a language

Example:

if (a > b) a = a + 1;

else b = b + 1;
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• syntax: if-else is an operator that takes three operands—a condition and two statements

• semantics: if the value of a is greater than the value of b, then increment a. Otherwise,
increment b.

Both the syntax and semantics of a programming language must be carefully defined so that:

• language implementors can implement the language (correctly), so that programs developed
with one implementation run correctly under another (portability)

• programmers can use the language (correctly)

3 Describing Syntax

A language is a set of strings of characters from some alphabet.
Examples:

• binary numbers (using the alphabet {0, 1})

• Java identifiers

• Java programs that compile with no errors

• English words (assuming we agree on a specific dictionary)

• English sentences (assuming we agree on a dictionary and all the grammatical rules of English,
which probably isn’t possible in practice)

The syntax rules of a language determine whether or not arbitrary strings belong to the lan-
guage. The first step in specifying syntax is describing the basic units or “words” of the language,
called lexemes. For example, some typical Java lexemes include:

• if

• ++

• +

• 3.27

• count

Lexemes are grouped into categories called tokens. Each token has one or more lexemes.

token sample lexemes

identifier count, i, x2, ...

if if

add op +, -

semi ;

int lit 0, 10

double lit -2.4

Table 1: Example tokens and some associated lexemes.
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Tokens are specified using regular expressions or finite automata.
The scanner/lexical analyzer of a compiler processes the character strings in the source program

and determines the tokens that they represent.
Once the tokens of a language are defined, the next step is to determine which sequences of

tokens are in the language (syntax).

3.1 Using BNF to Describe Syntax

BNF ≡ Backus-Naur Form
BNF is:

• a metalanguage—a language used to describe other languages

• the standard way to describe programming language syntax

• often used in language reference manuals

The class (set) of languages that can be described using BNF is called the context-free lan-
guages, and BNF descriptions are also called context-free grammars or just grammars.

symbol meaning

→ is defined as

| or (alternatives)

〈something〉 a nonterminal—replace by the definition of something

something (with no 〈 〉) a token or terminal—a “word” in the language being defined
(not replaced)

ε the empty string (nothing)

Table 2: BNF notation.

Example (if statements in C):

〈if-stmt〉 → if (〈expr〉) 〈stmt〉
〈if-stmt〉 → if (〈expr〉) 〈stmt〉 else 〈stmt〉

Each definition above is called a rule or production. A full BNF definition would include
definitions for all the nonterminals used—〈expr〉 and 〈stmt〉 are not defined above.

The two rules above can be abbreviated using | as follows:

〈if-stmt〉 → if (〈expr〉) 〈stmt〉
| if (〈expr〉) 〈stmt〉 else 〈stmt〉

Example (expressions in C):

〈expr〉 → id | num | (〈expr〉) | 〈expr〉〈op〉〈expr〉
〈op〉 → + | - | * | / | == | < | <= | > | >=

Note that BNF definitions can be recursive.
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3.2 Derivations

A derivation is a sequence of replacements using the rules of a grammar. Derivations:

• are often used to show that a particular sequence of tokens belongs to the language defined
by the grammar

• always begin with the start symbol for the grammar

– by tradition, the nonterminal on the LHS of the first rule is the start symbol

– o.w. the start symbol could have a special name such as 〈start〉 or 〈program〉

Example: A derivation to show that:

id + num

is a valid expression (〈expr〉):

〈expr〉 ⇒ 〈expr〉 〈op〉 〈expr〉
⇒ id 〈op〉 〈expr〉
⇒ id + 〈expr〉
⇒ id + num

Example: A derivation to show that:

id < (num / num)

is a valid expression (〈expr〉):

〈expr〉 ⇒ 〈expr〉 〈op〉 〈expr〉
⇒ id 〈op〉 〈expr〉
⇒ id < 〈expr〉
⇒ id < (〈expr〉)
⇒ id < (〈expr〉 〈op〉 〈expr〉)
⇒ id < (num 〈op〉 〈expr〉)
⇒ id < (num / 〈expr〉)
⇒ id < (num / num)

Definitions:

• the symbol ⇒ is called derives

• each string of symbols derived from the start symbol (including the start symbol itself) is
called a sentential form

• a leftmost derivation is a derivation in which the leftmost nonterminal is always chosen for
replacement

• a rightmost derivation is a derivation in which the rightmost nonterminal is always chosen
for replacement

Derivation order has no effect on the set of strings that can be derived.
BNF example: A subset of statements in C:
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〈stmt〉 → 〈if-stmt〉 | 〈loop-stmt〉 | 〈assign-stmt〉 | 〈cmpd-stmt〉
〈if-stmt〉 → if (〈expr〉) 〈stmt〉

| if (〈expr〉) 〈stmt〉 else 〈stmt〉
〈loop-stmt〉 → while (〈expr〉) 〈stmt〉
〈assign-stmt〉 → id = 〈expr〉 ;
〈cmpd-stmt〉 → { 〈stmt-list〉 }
〈stmt-list〉 → ε | 〈stmt〉 | 〈stmt〉 〈stmt-list〉
〈expr〉 → id | num | (〈expr〉) | 〈expr〉 〈op〉 〈expr〉
〈op〉 → + | - | * | / | == | < | <= | > | >=

Even more definitions:

• a BNF rule in which the nonterminal on the LHS is also the first (leftmost) symbol on the
RHS is left recursive

• a BNF rule in which the nonterminal on the LHS is also the last (rightmost) symbol on the
RHS is right recursive

For example:

• 〈stmt-list〉 → 〈stmt〉 〈stmt-list〉
is right recursive

• 〈expr〉 → 〈expr〉 〈op〉 〈expr〉
is both left and right recursive

3.3 Parse Trees

A parse tree is a graphical way of representing a derivation.

• the root of the parse tree is always the start symbol

• each interior node is a nonterminal

• each leaf node is a token

• the children of a nonterminal (interior node) are the RHS of some rule whose LHS is the
nonterminal

For example, a parse tree for:

if (id > num) id = num; else { id = id + num; id = id; }

using the previous grammar is:
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<stmt>

<if−stmt>

if ( <expr> ) <stmt> else <stmt>

<op><expr> <expr>

num>

<assign−stmt>

id = <expr>

num

<cmpd−stmt>

<stmt−list> }{

<stmt> <stmt−list>

<assign−stmt>

;

id = <expr> ;

<expr> <op> <expr>

id

id num+

<stmt> <stmt−list>

<assign−stmt>

id = <expr> ;

ε

id
Notes on parse trees:

• the parser phase of a compiler organizes tokens into parse trees

• parse trees explicitly show the structure and order of evaluation of language constructs

• there is a one-to-one correspondence between parse trees and leftmost derivations for a string

A grammar is ambiguous if there are 2 or more distinct parse trees (or equivalently, leftmost
derivations) for the same string.

Consider the grammar:

〈expr〉 → id | num | (〈expr〉) | 〈expr〉 + 〈expr〉 | 〈expr〉 * 〈expr〉

and the string:

id + num * id

The following parse trees show that this grammar is ambiguous:

<expr>

<expr> <expr>+

id <expr> <expr>*

idnum

<expr>

*<expr> <expr>

<expr> <expr>+ id

id num

Which parse tree would we prefer?
Grammars can often be modified to remove ambiguity—in this case, by enforcing associativity

and precedence:
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〈expr〉 → 〈expr〉 + 〈term〉 | 〈term〉
〈term〉 → 〈term〉 * 〈factor〉 | 〈factor〉
〈factor〉 → id | num | (〈expr〉)

The intuition behind this approach is to try to force the + to occur higher in the parse tree.
The parse tree for :

id + num * id

is:

<expr>

<expr> <term>+

<term> *

id

<factor><term>

<factor>

id num

<factor>

Trying to find another tree:

<expr>

<term>

<term> <factor>*

id?
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This grammar modification gives rise to three proof obligations:

• the two grammars define the same language

• the second grammar always gives correct associativity and precedence

• the second grammar is not ambiguous

These proofs are omitted.

3.4 Extended BNF (EBNF)

EBNF provides some additional notation, but does not allow any additional languages to be defined
(as compared to BNF). Hence, it is only a notational convenience.

notation meaning

[x] optional (0 or 1 occurrence of x)

{x} repetition (0 or more occurrences of x)

(x | y) choice (x or y)

Table 3: Additional EBNF notation.

Examples:

BNF: 〈stmt-list〉 → ε | 〈stmt〉 〈stmt-list〉
EBNF: 〈stmt-list〉 → {〈stmt〉}

BNF: 〈expr〉 → 〈expr〉 + 〈expr〉 | 〈expr〉 * 〈expr〉
EBNF: 〈expr〉 → 〈expr〉 (+ | *) 〈expr〉

BNF: 〈expr〉 → 〈expr〉 + 〈term〉 | 〈term〉
EBNF: 〈expr〉 → [〈expr〉 +] 〈term〉

4 Static Semantics and Attribute Grammars

Static semantics is any aspect of semantics (meaning) that can be checked at compile time
(statically). Examples:

• checking that variables are declared before they are used

• type checking

A more specific example: consider the Java code

String x = 5;

Question (1): is this an element of the language generated by the Java BNF?
Question (2): is this legal Java code?

As we can see from this example, many language properties can be checked statically, but are
impossible or difficult to specify with a BNF definition.

An attribute grammar is a grammar with attributes (properties) attached to each symbol,
plus rules for computing and checking the values of attributes. Attribute grammars are useful for
checking static semantic properties.
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If parse trees are implemented with a record or class instance for each node, then the attribute
is just an additional field in this representation.

Types of attributes:

• a synthesized attribute is an attribute whose value is computed based on the attribute
values of child nodes (in a parse tree). Synthesized attributes pass information up the parse
tree.

• an inherited attribute is an attribute whose value is computed based on the attribute
values of parent and sibling nodes (in a parse tree). Inherited attributes pass information
down the parse tree.

• an intrinsic attribute is an attribute whose value is not based on other attribute values.

For example, consider the grammar:

〈expr〉 → 〈expr〉 + 〈term〉 | 〈term〉
〈term〉 → 〈term〉 * 〈factor〉 | 〈factor〉
〈factor〉 → id | num | (〈expr〉)

and expression:

x + y * 3

with parse tree:

<expr>

<expr> <term>+

<term> *

num

<factor><term>

<factor>

id

<factor>

id

Consider using an attribute named value to represent the mathematical result of an expression.
If the value of x is 5 and y is 2, then the parse tree can be decorated/annotated with these intrinsic
attribute values as follows:

<expr>

<expr> <term>+

<term> * <factor><term>

<factor> <factor>

id (5) id (2)

num (3)
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Now synthesized attribute values can be computed for each of the nonterminals in the parse tree:

+

*

id (2)

num (3)<factor> (5)

<expr> (5)

id (5)

<term> (5) <term> (2)

<factor> (2)

<term> (6)

<expr> (11)

<factor> (3)

More practically, attributes can be used for type checking by adding a type attribute to each
symbol. For example, consider the grammar:

〈stmt〉 → 〈assign-stmt〉
〈assign-stmt〉 → id = 〈expr〉 ;
〈expr〉 → 〈expr〉 + 〈term〉 | 〈term〉
〈term〉 → 〈term〉 * 〈factor〉 | 〈factor〉
〈factor〉 → id | num | (〈expr〉)

and assignment statement:

x = y + 5;

and suppose that y is of type float and x is of type double. The annotated parse tree is:

<stmt> (double)

<assign−stmt> (double)

<expr> (float) ;=id (double)

<expr> (float) <term> (int)+

<term> (float)

<factor> (float)

id (float)

<factor> (int)

num (int)

This simple example shows only the actual types of the nodes in the parse tree, inferred as
synthesized attributes. A compiler would also use expected types—a completely separate attribute,
inferred as an inherited attribute. The textbook example 3.6 goes over this in detail. Once both
kinds of types have been inferred (actual and expected), a compiler can check the resulting parse
tree to see if the actual types are the same as the expected types. Of course, it will report an error
if there are any invalid mismatches. But note that some kinds of mismatches are okay, because
many languages allow coercion of types: for example, in Java, an int value can be coerced into a
float or double without causing a compiler error.

Parser generators such as YACC and CUP generate parsers from attribute grammar specifica-
tions of the language being parsed.
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