Combinational circuits

Cast fine:

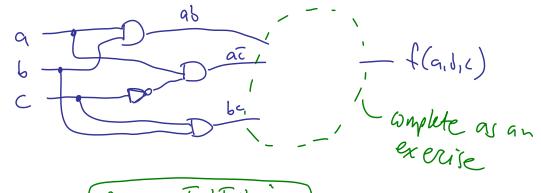
-Boolean functions

e-g. f(a, b, c) = ab + ac + bcthat table: a b c ab ac bc f000

001

010

100


100

100

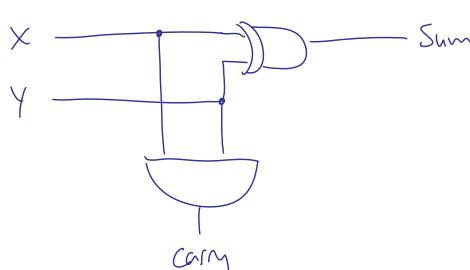
100

- Cogiz gates e.g. =D-, =D-, NOT NOT NAMD, NAMD,

- Boolean functions as circuits

Demo: InthTalle.java

Today: Combinational circuits


- they produce outputs (almost instantaneously) from present inputs (do not depend on past inputs)
- any boolean function can be implemented as a combinational circuit
- every combinational circuit computes a doolean function.
- we study specific, useful circuits:
 - (1) half adder
 - (2) full adder
 - (3) decoder (4) multiplexer

	Haff	ade
\sim		

motivation: computes last digit of bihay add

t ----
T

lupots	Outp	wts
XY	1	Carry
0 0 0 0 1 0 1	or single gate?	O O O O O O O O O O O O O O O O O O O
	~	_

(2) Full adder

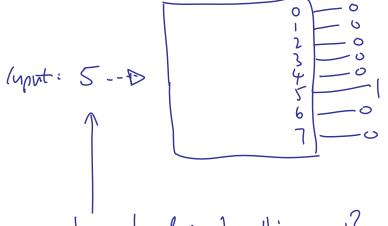
motivation: middle digit of bihay add

conjort X way in

Sun

X Y Cony ln		Outputs Sun Carry out	
<u> </u>	1 Corry In	Sum	Carry out
0	0		O
0	0 1	(0
0	(0		0
D	(0	(
	0 0		\bigcirc
	0	0	1
(1 0	0	1
l	(1

X Sum


observe the this hatf-addles

Note: Ripple-carry adder. Slide 3.35 or fig 3.13

(3) Decoder

- hput describes a number in some range, eg. $n \in \{0,1,2,...63\}$ - Output has one line for each possible input - When input is n, the nth output line is on, all others are off

Motivation: Useful for activating a nemory location based on its numerical address

how to describe this input!

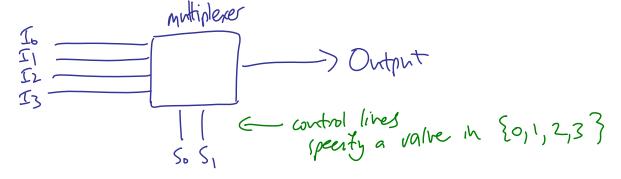
Represent in as unsigned litt. Need 3 input lines

eg. N=6

note ordering of bits and interpretation. See fig 3.15 in text look Activity: Solve decoder purse on resources page.

Activity: create a 1-to-2 decoder

Answer:


(Fill in missing part)

4) Multiplexer

- control lines specify a number in some range e.g. n & {6,1,-31}

- itput has one line for each control value.
- the ringle output is a copy of the nth input

useful for e.g. selecting a desired input on a data projector.

Activity: solve the multiplexer purcle on resources page

See also: bit shifter circuit havelout)	- (consult text sook & puzz
Objective is to shift the	- uprt lest or night
eg. 1101 shifted left shifted right	is 1010 (fill in with 1) is 0110 (fill in with
Activity: create a 2-to-1	multiplexer in SinCir.
Solution: lo —	- Output
5. —	(fill in missing part)
Challenge: Build a ripple carry	adder for 4-bit addition.

Also, see online dems on resources page.