Highway Dimension and Provably Efficient Shortest Path Algorithms

Andrew V. Goldberg

Microsoft Research - Silicon Valley http://research.microsoft.com/~goldberg/

(Joint work with Ittai Abraham, Amos Fiat, and Renato Werneck)

Andrew V. Goldberg (MSR-SVC)

4/5/10 1/37

Motivation: Computing Driving Directions

Andrew V. Goldberg (MSR-SVC)

< ロ > < 同 > < 三 > < 三 > 、

Outline

- Introduction and Motivation
- 2 Definitions and Model
- 3 Classical Algorithms
 - Recent Algorithms
 - Reach
 - Contraction Hierarchies
 - Transit Nodes
- 5 Theoretical Results
 - Highway Dimension
 - Theoretical Bounds

6 Final Remarks

[Anonymous]

• Theory is when you know something, but it doesn't work.

A (10) A (10) A (10)

[Anonymous]

- Theory is when you know something, but it doesn't work.
- Practice is when something works, but you don't know why.

[Anonymous]

- Theory is when you know something, but it doesn't work.
- Practice is when something works, but you don't know why.
- Programmers combine theory and practice: Nothing works and they don't know why.

[Anonymous]

- Theory is when you know something, but it doesn't work.
- Practice is when something works, but you don't know why.
- Programmers combine theory and practice: Nothing works and they don't know why.

Bridging the theory-practice gap:

[Anonymous]

- Theory is when you know something, but it doesn't work.
- Practice is when something works, but you don't know why.
- Programmers combine theory and practice: Nothing works and they don't know why.

Bridging the theory-practice gap:

Algorithm Engineering Know something \Rightarrow make it work.

[Anonymous]

- Theory is when you know something, but it doesn't work.
- Practice is when something works, but you don't know why.
- Programmers combine theory and practice: Nothing works and they don't know why.

Bridging the theory-practice gap:

Algorithm Engineering Know something \Rightarrow make it work.

Natural Science Something works \Rightarrow explain why.

A (10) A (10)

[Anonymous]

- Theory is when you know something, but it doesn't work.
- Practice is when something works, but you don't know why.
- Programmers combine theory and practice: Nothing works and they don't know why.

Bridging the theory-practice gap:

Algorithm Engineering Know something \Rightarrow make it work.

Natural Science Something works \Rightarrow explain why.

This talk How and why modern routing algorithms work.

Andrew V. Goldberg (MSR-SVC)

Highway Dimension

Recent Developments

Continent-sized road networks have 10s of millions intersections. Dijkstra's algorithm: $\approx 5 \text{ s}$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Recent Developments

Continent-sized road networks have 10s of millions intersections.

Dijkstra's algorithm: \approx 5 s

Recent work

- Arc flags [Lauther 04, Köhler et al. 06].
- *A*^{*} with landmarks [Goldberg & Harrelson 05].
- Reach [Gutman 04, Goldberg et al. 06].
- Highway hierarchies [Sanders & Schultes 05].
- Contraction hierarchies [Geisberger et al. 08].
- Transit nodes [Bast et al. 06].
- DIMACS Shortest Paths Implementation Challenge (2005–2006).

Recent Developments

Continent-sized road networks have 10s of millions intersections.

Dijkstra's algorithm: \approx 5 s

Recent work

- Arc flags [Lauther 04, Köhler et al. 06].
- A* with landmarks [Goldberg & Harrelson 05].
- Reach [Gutman 04, Goldberg et al. 06].
- Highway hierarchies [Sanders & Schultes 05].
- Contraction hierarchies [Geisberger et al. 08].
- Transit nodes [Bast et al. 06].
- DIMACS Shortest Paths Implementation Challenge (2005–2006).

Greatly improved performance: < 1 ms, $\approx 0.1 \text{ s on a mobile device.}$ Only a few hundred intersections searched.

Andrew V. Goldberg (MSR-SVC)

Definitions and Model

Input

- Graph G = (V, E) (intersections, road segments), |V| = n, |E| = m.
- Weight function ℓ (length, transit time, fuel consumption, ...).
- Static problem, G and ℓ incorporate all modeling information.

イベト イラト イラト

Definitions and Model

Input

- Graph G = (V, E) (intersections, road segments), |V| = n, |E| = m.
- Weight function ℓ (length, transit time, fuel consumption, ...).
- Static problem, G and ℓ incorporate all modeling information.
- Query (multiple times for the same input network)
 - Given origin s and destination t, find optimal path from s to t.
 - Exact algorithms help modeling and debugging.

Definitions and Model

Input

- Graph G = (V, E) (intersections, road segments), |V| = n, |E| = m.
- Weight function ℓ (length, transit time, fuel consumption, ...).
- Static problem, G and ℓ incorporate all modeling information.

Query (multiple times for the same input network)

- Given origin s and destination t, find optimal path from s to t.
- Exact algorithms help modeling and debugging.

Algorithms with preprocessing

- Two phases: practical preprocessing and real-time queries.
- Preprocessing output not much bigger than the input.
- Preprocessing may use more resources than queries.

[Dijkstra 1959], [Dantzig 1963].

Dijkstra's Algorithm

- Examine vertices in the order of their distance from *s*.
- Stop when *t* is reached.

4 3 5 4 3

4 A N

[Dijkstra 1959], [Dantzig 1963].

Dijkstra's Algorithm

- Examine vertices in the order of their distance from *s*.
- Stop when *t* is reached.

Reverse Algorithm

- Run algorithm from *t* in the graph with all arcs reversed.
- Stop when *s* is reached.

[Dijkstra 1959], [Dantzig 1963].

Dijkstra's Algorithm

- Examine vertices in the order of their distance from *s*.
- Stop when *t* is reached.

Reverse Algorithm

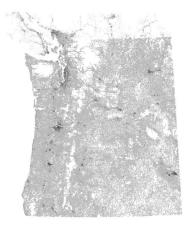
- Run algorithm from t in the graph with all arcs reversed.
- Stop when s is reached.

Bidirectional Algorithm

- Run forward Dijkstra from *s* and backward from *t*.
- Stop when the searches meet.

• • • • • • • • • • • • •

Example Graph



1.6M vertices, 3.8M arcs, travel time metric.

Andrew V. Goldberg (MSR-SVC)

Highway Dimension

4/5/10 8 / 37

• • • • • • • • • • • •

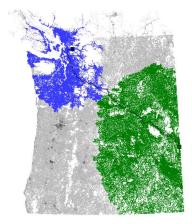
Searched area

Andrew V. Goldberg (MSR-SVC)

Highway Dimension

4/5/10 9/37

Bidirectional Algorithm



forward search/ reverse search

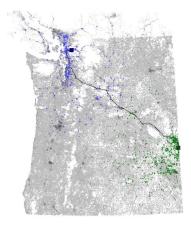
Andrew V. Goldberg (MSR-SVC)

Highway Dimension

4/5/10 10 / 37

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Reach Algorithm



Pruning leads to amazing speedup.

Andrew V. Goldberg (MSR-SVC)

Highway Dimension

4/5/10 11/37

Algorithm intuition

• Reach pruning (RE): Local intersections far from origin/destination can be ignored.

Algorithm intuition

- Reach pruning (RE): Local intersections far from origin/destination can be ignored.
- Highway/contraction hierarchies (CH): Shortest path goes from local roads to local highways to global highways to local highways to local roads.

Algorithm intuition

- Reach pruning (RE): Local intersections far from origin/destination can be ignored.
- Highway/contraction hierarchies (CH): Shortest path goes from local roads to local highways to global highways to local highways to local roads.
- Transit nodes (TN): For any region, a small number of "toll booths" covers all sufficiently long optimal in/out paths.

Algorithm intuition

- Reach pruning (RE): Local intersections far from origin/destination can be ignored.
- Highway/contraction hierarchies (CH): Shortest path goes from local roads to local highways to global highways to local highways to local roads.
- Transit nodes (TN): For any region, a small number of "toll booths" covers all sufficiently long optimal in/out paths.

These intuitive ideas can be mathematically formalized and lead to provably correct algorithms which work very well on road networks.

A (10) A (10)

Reach Fundamentals

[Gutman 04; Goldberg et al. 06]

Preprocessing computes intersection locality.

Query uses locality to prune search.

Reach Fundamentals

[Gutman 04; Goldberg et al. 06]

Preprocessing computes intersection locality.

Query uses locality to prune search.

A D M A A A M M

Definition of reach

• Consider a vertex v that splits a path P into P_1 and P_2 . $r_P(v) = \min(\ell(P_1), \ell(P_2)).$

Reach Fundamentals

[Gutman 04; Goldberg et al. 06]

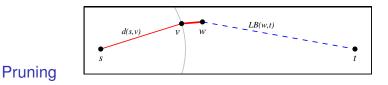
Preprocessing computes intersection locality.

Query uses locality to prune search.

Definition of reach

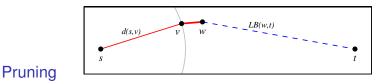
- Consider a vertex v that splits a path P into P_1 and P_2 . $r_P(v) = \min(\ell(P_1), \ell(P_2)).$
- $r(v) = \max_P(r_P(v))$ over all shortest paths *P* through *v*.

Pruning Search Using Reach



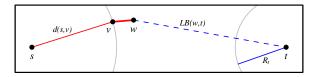
If $r(w) < \min(d(v) + \ell(v, w), LB(w, t))$ then prune w.

Pruning Search Using Reach



If $r(w) < \min(d(v) + \ell(v, w), LB(w, t))$ then prune w.

Lower bounds for nothing



Bidirectional search gives implicit bounds (R_t below).

Andrew V. Goldberg (MSR-SVC)

RE Algorithm

RE Query

- Bidirectional Dijkstra's algorithm with pruning based on reaches.
- A small change to Dijkstra's algorithm.

RE Algorithm

RE Query

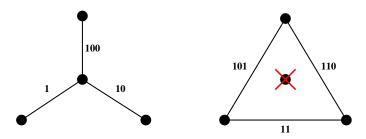
- Bidirectional Dijkstra's algorithm with pruning based on reaches.
- A small change to Dijkstra's algorithm.

Remarks

- O(nm) perprocessing impractical on large graphs.
- Fast heuristic preprocessing computes reach upper bounds.
- Shortcuts speed up both preprocessing and query.
- CH algorithm shows that shortcuts are crucial.

Shortcut Operation

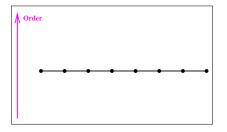
[Sanders & Schultes 05] The key operation for Contraction Hierarchies algorithm



A shortcut arc can be omitted if redundant (alternative path exists).

Andrew	V. Goldberg	(MSR-SVC)
--------	-------------	-----------

Contraction Hierarchies



[Geisberger et al. 08]

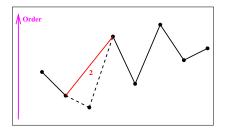
Preprocessing orders vertices, order corresponds to locality. Both forward and reverse searches consider only "up" (more local to more global) edges. Effective pruning.

[Geisberger et al. 08]

Preprocessing orders vertices, order corresponds to locality. Both forward and reverse searches consider only "up" (more local to more global) edges. Effective pruning.

Preprocessing Algorithm

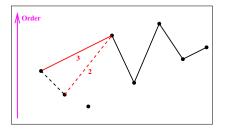
Heuristically order vertices.



[Geisberger et al. 08]

Preprocessing orders vertices, order corresponds to locality. Both forward and reverse searches consider only "up" (more local to more global) edges. Effective pruning.

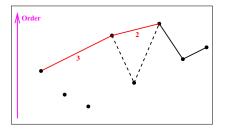
- Heuristically order vertices.
- Shortcut vertices in that order.



[Geisberger et al. 08]

Preprocessing orders vertices, order corresponds to locality. Both forward and reverse searches consider only "up" (more local to more global) edges. Effective pruning.

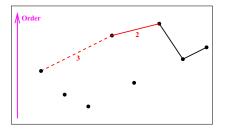
- Heuristically order vertices.
- Shortcut vertices in that order.



[Geisberger et al. 08]

Preprocessing orders vertices, order corresponds to locality. Both forward and reverse searches consider only "up" (more local to more global) edges. Effective pruning.

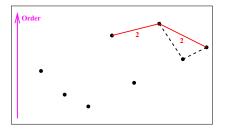
- Heuristically order vertices.
- Shortcut vertices in that order.



[Geisberger et al. 08]

Preprocessing orders vertices, order corresponds to locality. Both forward and reverse searches consider only "up" (more local to more global) edges. Effective pruning.

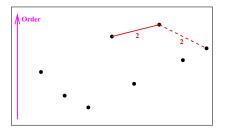
- Heuristically order vertices.
- Shortcut vertices in that order.



[Geisberger et al. 08]

Preprocessing orders vertices, order corresponds to locality. Both forward and reverse searches consider only "up" (more local to more global) edges. Effective pruning.

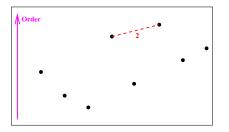
- Heuristically order vertices.
- Shortcut vertices in that order.



[Geisberger et al. 08]

Preprocessing orders vertices, order corresponds to locality. Both forward and reverse searches consider only "up" (more local to more global) edges. Effective pruning.

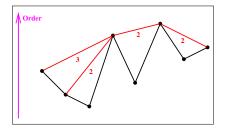
- Heuristically order vertices.
- Shortcut vertices in that order.



[Geisberger et al. 08]

Preprocessing orders vertices, order corresponds to locality. Both forward and reverse searches consider only "up" (more local to more global) edges. Effective pruning.

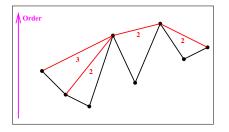
- Heuristically order vertices.
- Shortcut vertices in that order.



[Geisberger et al. 08]

Preprocessing orders vertices, order corresponds to locality. Both forward and reverse searches consider only "up" (more local to more global) edges. Effective pruning.

- Heuristically order vertices.
- Shortcut vertices in that order.
- To the original graph, add all shortcuts introduced in step 2.



[Geisberger et al. 08]

Preprocessing orders vertices, order corresponds to locality. Both forward and reverse searches consider only "up" (more local to more global) edges. Effective pruning.

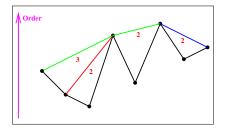
Preprocessing Algorithm

- Heuristically order vertices.
- Shortcut vertices in that order.
- To the original graph, add all shortcuts introduced in step 2.

Query algorithm

 Run a modified bidirectional Dijkstra's algorithm.

★ ∃ > < ∃ >



[Geisberger et al. 08]

Preprocessing orders vertices, order corresponds to locality. Both forward and reverse searches consider only "up" (more local to more global) edges. Effective pruning.

Preprocessing Algorithm

- Heuristically order vertices.
- Shortcut vertices in that order.
- To the original graph, add all shortcuts introduced in step 2.

Query algorithm

- Run a modified bidirectional Dijkstra's algorithm.
- The searches only consider "up" edges.

A B A A B A

Transit Node Intuition

Andr

For a region, there is a small set of nodes such that all sufficiently long shortest paths out of the region pass a node in the set.

	٠	► < ± >	< ≣ >	-2	୬୯୯
rew V. Goldberg (MSR-SVC)	Highway Dimension		4/5/1	0	18/37

TN Preprocessing

[Bast et al. 06]

Basic concepts

- Divide a map into regions (a few thousand).
- For each region, optimal paths to far away places pass through one of a small number of access nodes (≈ 10 on the average).
- The union of access nodes is the set of transit nodes ($\approx 10\,000$).

TN Preprocessing

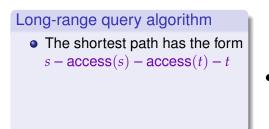
[Bast et al. 06]

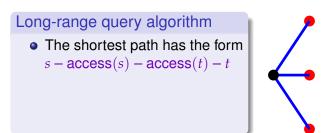
Basic concepts

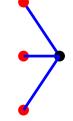
- Divide a map into regions (a few thousand).
- For each region, optimal paths to far away places pass through one of a small number of access nodes (≈ 10 on the average).
- The union of access nodes is the set of transit nodes ($\approx 10\,000$).

- Find access nodes for every region.
- Connect each vertex to its access nodes.
- Compute all pairs of shortest paths between transit nodes.

Long-range query algorithm The shortest path has the form s - access(s) - access(t) - t





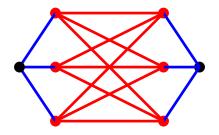


Andrew V. Goldberg (MSR-SVC)

4/5/10 20 / 37

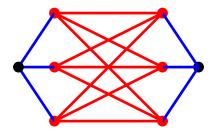
Long-range query algorithm

The shortest path has the form
s - access(s) - access(t) - t



Long-range query algorithm

- The shortest path has the form s - access(s) - access(t) - t
- Table look-up for the (access(s), access(t)) node pairs.



Remarks

- Very fast: 10×10 table look-ups per long-range query.
- Local queries: another method or hierarchical approach.

(4) (5) (4) (5)

Theoretical Results

Practice

- Intuitive and practical algorithms, but...
- Why do they work well on road networks?
- What is a road network (formally)?

Theoretical Results

Practice

- Intuitive and practical algorithms, but...
- Why do they work well on road networks?
- What is a road network (formally)?

Theory [Abraham, Fiat, Goldberg & Werneck 10]

- Define highway dimension (HD).
- Good time bounds for the three algorithms assuming HD is small.
- Analysis highlights algorithm similarities.
- Generative model of small HD networks (road network formation).

In the spirit of the small world model [Milgram 67, Kleinberg 99].

Andrew V. Goldberg (MSR-SVC)

Highway Dimension

Definitions and Remarks

Definitions and assumptions

- Constant maximum degree.
- $B_{v,r}$ denotes the set of vertices within distance r from v.
- |P| denotes the length of P.
- h denotes highway dimension.
- k denotes either h or O(h log n) (exponential or poly-time preprocessing).
- Network diameter *D*.

Definitions and assumptions

- Constant maximum degree.
- $B_{v,r}$ denotes the set of vertices within distance r from v.
- |P| denotes the length of P.
- h denotes highway dimension.
- *k* denotes either *h* or *O*(*h* log *n*) (exponential or poly-time preprocessing).
- Network diameter D.

Remarks

- HD definition motivated by Transit Nodes.
- Preprocessing based on Contraction Hierarchies ideas.
- Analysis based on Reach ideas.

Highway Dimension Motivation

Andrew

For a region, there is a small set of nodes such that all sufficiently long shortest paths out of the region pass a node in the set.

) 4 (
w V. Goldberg (MSR-SVC)	Highway Dimension	4/5/10	23 / 37

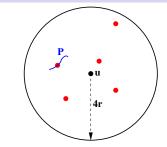
Highway Dimension Definition

Locally, a small set covers all long SPs.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Highway Dimension Definition

Locally, a small set covers all long SPs.



• • • • • • • • • • • • •

Highway dimension (HD) h

 $\begin{array}{ll} \forall \quad r \in \Re, \forall u \in V, \exists S \subseteq B_{u,4r}, |S| \leq h, \text{ such that} \\ \forall \quad v, w \in B_{u,4r}, \\ \quad \text{ if } P \text{ is a SP: } \ell(P(v,w)) > r \text{ and } P(v,w) \subseteq B_{u,4r}, \\ \quad \text{ then } P(v,w) \cap S \neq \emptyset. \end{array}$

Andrew V. Goldberg (MSR-SVC)

4/5/10 24 / 37

Highway vs. Doubling Dimension

Definition

A metric space has a doubling dimension α if every ball of radius *r* can be covered by 2^{α} balls of radius r/2.

Highway vs. Doubling Dimension

Definition

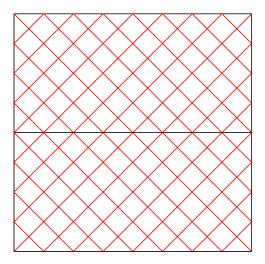
A metric space has a doubling dimension α if every ball of radius *r* can be covered by 2^{α} balls of radius r/2.

Line: Small HD

A line has HD 7 and doubling dimension 1.

Andrew	V.	Goldberg	(MSR-SVC)
--------	----	----------	-----------

Grid: High HD



A grid has HD $\Theta(\sqrt{n})$ and the doubling dimension 2.

Andrew V. Goldberg (MSR-SVC)

Highway Dimension

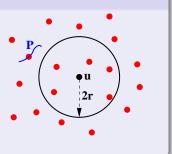
4/5/10 26 / 37

Shortest Path Covers

All SPs in a range can be covered by a sparse set.

(r,k) Shortest path cover ((r,k)-SPC): A set *C* such that

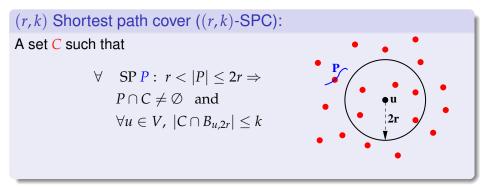
$$\forall \quad \text{SP } P: \ r < |P| \le 2r \Rightarrow$$
$$P \cap C \neq \emptyset \quad \text{and}$$
$$\forall u \in V, \ |C \cap B_{u,2r}| \le k$$



< ∃ ►

Shortest Path Covers

All SPs in a range can be covered by a sparse set.



Can use constants different from 4 and 2, but the constants are related.

Andrew V. Goldberg	(MSR-SVC)
--------------------	-----------

Theorem

If *G* has highway dimension *h*, then $\forall r \exists an (r,h)$ -SPC.

Proof idea: Show that S^* , the smallest set that covers all shortest paths $P: r < |P| \le 2r$, is an (r, h)-SPC.

4 3 5 4 3

Theorem

If *G* has highway dimension *h*, then $\forall r \exists an (r,h)$ -SPC.

Proof idea: Show that S^* , the smallest set that covers all shortest paths P: $r < |P| \le 2r$, is an (r, h)-SPC.

Finding S* is NP-hard. Efficient construction?

Theorem

If *G* has highway dimension *h*, then $\forall r \exists an (r,h)$ -SPC.

Proof idea: Show that S^* , the smallest set that covers all shortest paths $P: r < |P| \le 2r$, is an (r, h)-SPC.

Finding S^* is NP-hard. Efficient construction?

Theorem

If *G* has highway dimension *h*, then for any *r* we can construct, in polynomial time, an $(r, O(h \log n))$ -SPC.

Proof idea: Use the greedy set-cover algorithm to get an $O(\log n)$ approximation of S^* .

Theorem

If *G* has highway dimension *h*, then $\forall r \exists an (r,h)$ -SPC.

Proof idea: Show that S^* , the smallest set that covers all shortest paths $P: r < |P| \le 2r$, is an (r, h)-SPC.

Finding S^* is NP-hard. Efficient construction?

Theorem

If *G* has highway dimension *h*, then for any *r* we can construct, in polynomial time, an $(r, O(h \log n))$ -SPC.

Proof idea: Use the greedy set-cover algorithm to get an $O(\log n)$ approximation of S^* .

Proofs depend on the choice of constants in the definitions.

Andrew V. Goldberg (MSR-SVC)

Highway Dimension

4/5/10 28 / 37

Generic Preprocessing

- Let $S_0 = V$. For $1 \le i \le \log D$ build $(2^i, k)$ -SPC covers S_i .
- Let $L_i = S_i \bigcup_{i=1}^{\log D} S_j$ (vertex partitioning into layers).
- Order vertices so that L_i comes before L_{i+1}; ordering inside layers is arbitrary.
- Do shortcutting in this order to get E^+ .

Preprocessing algorithm

- Let $S_0 = V$. For $1 \le i \le \log D$ build $(2^i, k)$ -SPC covers S_i .
- Let $L_i = S_i \bigcup_{i+1}^{\log D} S_j$ (vertex partitioning into layers).
- Order vertices so that L_i comes before L_{i+1}; ordering inside layers is arbitrary.
- Do shortcutting in this order to get *E*⁺.

Running time

Preprocessing is exponential (k = h) or polynomial $(k = O(h \log n)))$.

Lemma

For $v \in L_i$, $j \ge i$, the number of $(v, w) \in E^+$ with $w \in L_j$ is at most k.

Proof. (v, w) corresponds to *P* with internal vertices less than v, w. Thus $w \in B_{v,2\cdot 2^i}$. The SPC definition implies the lemma.

Lemma

For $v \in L_i$, $j \ge i$, the number of $(v, w) \in E^+$ with $w \in L_j$ is at most k.

Proof. (v, w) corresponds to *P* with internal vertices less than v, w. Thus $w \in B_{v,2\cdot 2^i}$. The SPC definition implies the lemma.

Theorem

In $(V, E \cup E^+)$, vertex degrees are bounded by $O(k \log D)$ and $|E \cup E^+| = O(nk \log D)$

Lemma

For $v \in L_i$, $j \ge i$, the number of $(v, w) \in E^+$ with $w \in L_j$ is at most k.

Proof. (v, w) corresponds to *P* with internal vertices less than v, w. Thus $w \in B_{v,2\cdot 2^i}$. The SPC definition implies the lemma.

Theorem

In $(V, E \cup E^+)$, vertex degrees are bounded by $O(k \log D)$ and $|E \cup E^+| = O(nk \log D)$

Things are better than the worst case in practice.

RE Preprocessing

Remarks

- Reach bounds are in the graph with shortcuts.
- Break ties based on hop count (prefer shortcuts).

Lemma

If $v \in L_i$ then reach $(v) \leq 2 \cdot 2^i$.

Proof: Suppose the reach is greater. Then there is a shortest path *P* that *v* divides into P_1 and P_2 with $|P_1|$, $|P_2| > 2 \cdot 2^i$. Both P_1 and P_2 contain vertices in L_j with j > i, so there is a shortcut from P_1 to P_2 . But then *P* is not a shortest path.

Additional work is linear.

A THE A THE A

Query Time Bounds

Theorem

RE query takes $O((k \log D)^2)$ time.

Proof: Consider a forward search from *s*. In $B_{s,2\cdot2^i}$, the search scans only vertices of L_i in $B_{s,2\cdot2^i}$. Thus $O(k \log D)$ scans.

< 回 > < 回 > < 回 > -

Query Time Bounds

Theorem

RE query takes $O((k \log D)^2)$ time.

Proof: Consider a forward search from *s*. In $B_{s,2\cdot2^i}$, the search scans only vertices of L_i in $B_{s,2\cdot2^i}$. Thus $O(k \log D)$ scans.

Remarks

- Shortest path can be extracted in time linear in the number of its arcs.
- Similar analysis for CH yields the same bound.
- Also develop a faster version of TN: $O(k \log D)$ query.

Network Formation

Natural networks with constant highway dimension?

Attempt to model road networks

- Build on the Earth surface (low doubling dimension).
- Build in decentralized and incremental manner.
- Highways are faster than local roads.

Capture some, but not all, real-life properties.

Network Formation

Natural networks with constant highway dimension?

Attempt to model road networks

- Build on the Earth surface (low doubling dimension).
- Build in decentralized and incremental manner.
- Highways are faster than local roads.

Capture some, but not all, real-life properties.

Setting

- Metric space (M, dist), doubling dim. $\log \alpha$, diameter *D*.
- Speedup parameter $\delta \in (0, 1)$.
- Edge $\{v, w\}$ has length dist(v, w) and transit time $\tau(v, w) = dist^{1-\delta}(v, w)$. (Long roads are fast.)
- On-line network formation, adversarial vertex placement.

Network Formation (cont.)

In the spirit of dynamic spanners [Gottlieb & Roditty 08].

- Adversary adds vertices, we connect them.
- Intuition: connect a new village to all nearby villages and to the closest town.
- Formally: maintain covers C_i for $0 \le i \le \log D$. $C_0 = V, C_{i+1} \subseteq C_i$, vertices in C_i are at least 2^i apart.
- When adding a new vertex *v*, add *v* to *C*₀,...,*C*_{*i*} for appropriate *i*. (The first vertex added to all *C*'s.)
- For $0 \le j \le i$, connect v to $C_j \cap B_{v,6 \cdot 2^j}$.
- If $i < \log D$, connect v to the closest element of C_{i+1} .

Theorem

The network has highway dimension of $\alpha^{O(1)}$.

Andrew V. Goldberg (MSR-SVC)

< 日 > < 同 > < 回 > < 回 > < 回 > <

Summary

- Intuitive and practical routing algorithms.
- Efficient implementations.
- Used in practice.
- Theoretical understanding and justification.
- Further research, e.g., improved bounds or algorithms for other problems assuming small HD (TSP, vehicle routing, etc.).
- Static problem solved, dynamic active research area.
 - Real time traffic.
 - Historical data.
 - Combination (prediction).

SPA (Shortest Path Algorithms) project page http://research.microsoft.com/en-us/projects/SPA/

Questions?

- Introduction and Motivation
- 2 Definitions and Model
- 3 Classical Algorithms
 - Recent Algorithms
 - Reach
 - Contraction Hierarchies
 - Transit Nodes
- Theoretical Results
 - Highway Dimension
 - Theoretical Bounds

Final Remarks