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Motivation: Computing Driving Directions
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Outline

@ Introduction and Motivation
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Theory vs. Practice

[Anonymous]
@ Theory is when you know something, but it doesn’t work.
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Theory vs. Practice

[Anonymous]
@ Theory is when you know something, but it doesn’t work.
@ Practice is when something works, but you don’t know why.

@ Programmers combine theory and practice:
Nothing works and they don’t know why.

Bridging the theory—practice gap:

Algorithm Engineering
Know something = make it work.

Natural Science
Something works =- explain why.

This talk
How and why modern routing algorithms work.
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Recent Developments

Continent-sized road networks have 10s of millions intersections.

Dijkstra’s algorithm: =~ 5 s

Andrew V. Goldberg (MSR-SVC) Highway Dimension 4/5/10 5/37



Recent Developments

Continent-sized road networks have 10s of millions intersections.
Dijkstra’s algorithm: =~ 5 s

Recent work
@ Arc flags [Lauther 04, Kbhler et al. 06].
@ A* with landmarks [Goldberg & Harrelson 05].
@ Reach [Gutman 04, Goldberg et al. 06].
@ Highway hierarchies [Sanders & Schultes 05].
@ Contraction hierarchies [Geisberger et al. 08].
@ Transit nodes [Bast et al. 06].
@ DIMACS Shortest Paths Implementation Challenge (2005-2006)

v
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Recent Developments

Continent-sized road networks have 10s of millions intersections.
Dijkstra’s algorithm: =~ 5 s

Recent work
@ Arc flags [Lauther 04, Kéhler et al. 06].
@ A* with landmarks [Goldberg & Harrelson 05].
@ Reach [Gutman 04, Goldberg et al. 06].
@ Highway hierarchies [Sanders & Schultes 05].
@ Contraction hierarchies [Geisberger et al. 08].
@ Transit nodes [Bast et al. 06].
@ DIMACS Shortest Paths Implementation Challenge (2005-2006)

v

Greatly improved performance: < 1 ms, ~ 0.1 s on a mobile device.
Only a few hundred intersections searched.
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Definitions and Model

Input
e Graph G = (V,E) (intersections, road segments), |V| = n,
|E| = m.

e Weight function ¢ (length, transit time, fuel consumption, ...).
e Static problem, G and ¢ incorporate all modeling information.
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Definitions and Model

Input
e Graph G = (V,E) (intersections, road segments), |V| = n,
|E| = m.

e Weight function ¢ (length, transit time, fuel consumption, ...).
e Static problem, G and ¢ incorporate all modeling information.

Query (multiple times for the same input network)

e Given origin s and destination t, find optimal path from s to t.
e Exact algorithms help modeling and debugging.

Algorithms with preprocessing

e Two phases: practical preprocessing and real-time queries.
@ Preprocessing output not much bigger than the input.
@ Preprocessing may use more resources than queries.
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Dijkstra’s Algorithm

[Dijkstra 1959], [Dantzig 1963].
Dijkstra’s Algorithm

@ Examine vertices in the order of their distance from s.

@ Stop when t is reached.
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Dijkstra’s Algorithm

[Dijkstra 1959], [Dantzig 1963].
Dijkstra’s Algorithm

@ Examine vertices in the order of their distance from s.
@ Stop when t is reached.

Reverse Algorithm

@ Run algorithm from t in the graph with all arcs reversed.
@ Stop when s is reached.
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Dijkstra’s Algorithm

[Dijkstra 1959], [Dantzig 1963].
Dijkstra’s Algorithm

@ Examine vertices in the order of their distance from s.
@ Stop when t is reached.

Reverse Algorithm

@ Run algorithm from t in the graph with all arcs reversed.
@ Stop when s is reached.

Bidirectional Algorithm

@ Run forward Dijkstra from s and backward from ¢.
@ Stop when the searches meet.
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1.6M vertices, 3.8M arcs, travel time metric.
«O>» «F»r 4 A
 Andrew V. Goldberg (MsR-sve) ~ Highway Dimension 4510 8/37




Dijkstra’s Algorithm

Searched area
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Bidirectional Algorithm

forward search/ reverse search

Andrew V. Goldberg (MSR-SVC) Highway Dimension 4/5/10 10/37



Pruning leads to amazing speedup.
«O>» «F»r « QA
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Three Recent Algorithms

Algorithm intuition

@ Reach pruning (RE): Local intersections far from
origin/destination can be ignored.
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Three Recent Algorithms

Algorithm intuition
@ Reach pruning (RE): Local intersections far from
origin/destination can be ignored.

e Highway/contraction hierarchies (CH): Shortest path goes
from local roads to local highways to global highways to
local highways to local roads.

e Transit nodes (TN): For any region, a small number of “toll
booths” covers all sufficiently long optimal in/out paths.

These intuitive ideas can be mathematically formalized and lead to
provably correct algorithms which work very well on road networks.
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Reach Fundamentals

[Gutman 04; Goldberg et al. 06]

Preprocessing computes

intersection locality.
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Reach Fundamentals

[Gutman 04; Goldberg et al. 06]

Preprocessing computes
intersection locality.

Query uses locality to prune
search.

Definition of reach

@ Consider a vertex v that splits
a path P into P; and P,.
rp(v) = min(E(Pl),é(Pz)).

©2008 Navieq © 2009 Mcrosof
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Reach Fundamentals

[Gutman 04; Goldberg et al. 06]

Preprocessing computes
intersection locality.

Query uses locality to prune

: i/ . search.

o (‘ii{\\ Definition of reach
- " e Consider a vertex v that splits
a path P into P; and P,.
rp(v) = min(E(Pl),é(Pz)).

@ r(v) = maxp(rp(v)) over all
shortest paths P through v.
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Pruning Search Using Reach

- - _ \L\B(W,I)

d(sv) \Y w

Pruning

If (w) < min(d(v) + ¢(v,w),LB(w,t)) then prune w.
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Pruning Search Using Reach

- - _ \L\B(W,I)

d(sv) \Y w

172)

Pruning

If r(w) < min(d(v) + ¢(v,w), LB(w, t)) then prune w.

Lower bounds for nothing

d(sv) v w

(%]

Bidirectional search gives implicit bounds (R; below).
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RE Algorithm

RE Query
@ Bidirectional Dijkstra’s algorithm with pruning based on reaches.
@ A small change to Dijkstra’s algorithm.
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RE Algorithm

RE Query
@ Bidirectional Dijkstra’s algorithm with pruning based on reaches.
@ A small change to Dijkstra’s algorithm.

Remarks
e O(nm) perprocessing impractical on large graphs.
e Fast heuristic preprocessing computes reach upper bounds.
e Shortcuts speed up both preprocessing and query.
e CH algorithm shows that shortcuts are crucial.
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Shortcut Operation

[Sanders & Schultes 05]
The key operation for Contraction Hierarchies algorithm

100
101 110

1 o x

11

A shortcut arc can be omitted if redundant (alternative path exists).
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Contraction Hierarchies

Order [Geisberger et al. 08]
Preprocessing orders vertices,
order corresponds to locality. Both

and reverse searches
consider only “up” (more local to
more global) edges. Effective
pruning.
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Contraction Hierarchies

Order [Geisberger et al. 08]
Preprocessing orders vertices,

‘ order corresponds to locality. Both
and reverse searches
consider only “up” (more local to

more global) edges. Effective
pruning.

Preprocessing Algorithm
@ Heuristically order vertices.
© Shortcut vertices in that order.

© To the original graph, add all
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Contraction Hierarchies

Preprocessing Algorithm

@ Heuristically order vertices.
© Shortcut vertices in that order.

© To the original graph, add all
shortcuts introduced in step 2.

Andrew V. Goldberg (MSR-SVC)
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and reverse searches
consider only “up” (more local to
more global) edges. Effective
pruning.

Query algorithm

@ Run a modified bidirectional
Dijkstra’s algorithm.
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Contraction Hierarchies

Order

Preprocessing Algorithm
@ Heuristically order vertices.
© Shortcut vertices in that order.

© To the original graph, add all
shortcuts introduced in step 2.

Andrew V. Goldberg (MSR-SVC)

Highway Dimension

[Geisberger et al. 08]
Preprocessing orders vertices,
order corresponds to locality. Both

and reverse searches
consider only “up” (more local to
more global) edges. Effective
pruning.

Query algorithm

@ Run a modified bidirectional
Dijkstra’s algorithm.

@ The searches only consider
“‘up” edges.
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Transit Node Intuition
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For a region, there is a small set of nodes such that all sufficiently long
shortest paths out of the region pass a node in the set.
Andrew V. Goldberg (MSR-SVC) Highway Dimension

4/5/10 18/37



TN Preprocessing

[Bast et al. 06]
Basic concepts

e Divide a map into regions (a few thousand).

e For each region, optimal paths to far away places pass
through one of a small number of access nodes (~ 10 on
the average).

@ The union of access nodes is the set of transit nodes
(=~ 10000).
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TN Preprocessing

[Bast et al. 06]
Basic concepts

e Divide a map into regions (a few thousand).

e For each region, optimal paths to far away places pass
through one of a small number of access nodes (~ 10 on
the average).

@ The union of access nodes is the set of transit nodes
(=~ 10000).

Preprocessing Algorithm
@ Find access nodes for every region.
@ Connect each vertex to its access nodes.
@ Compute all pairs of shortest paths between transit nodes.
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TN Query

Long-range query algorithm

@ The shortest path has the form
s —access(s) —access(t) — t
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TN Query

Long-range query algorithm
@ The shortest path has the form
s —access(s) —access(t) — t
@ Table look-up for the

(access(s), access(t)) node
pairs.

Remarks

e Very fast: 10 x 10 table look-ups per long-range query.
e Local queries: another method or hierarchical approach.
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Theoretical Results

Practice

e Intuitive and practical algorithms, but...
@ Why do they work well on road networks?
e What is a road network (formally)?
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Theoretical Results

Practice

e Intuitive and practical algorithms, but...
@ Why do they work well on road networks?
e What is a road network (formally)?

Theory [Abraham, Fiat, Goldberg & Werneck 10]

e Define highway dimension (HD).

@ Good time bounds for the three algorithms assuming HD is
small.

e Analysis highlights algorithm similarities.

e Generative model of small HD networks (road network
formation).

In the spirit of the small world model [Milgram 67, Kleinberg 99].
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Definitions and Remarks

Definitions and assumptions

e Constant maximum degree.

e B, , denotes the set of vertices within distance r from v.
@ |P| denotes the length of P.

@ h denotes highway dimension.

e k denotes either h or O(hlogn) (exponential or poly-time
preprocessing).

@ Network diameter D.

Andrew V. Goldberg (MSR-SVC) Highway Dimension 4/5/10 22/37



Definitions and Remarks

Definitions and assumptions

e Constant maximum degree.

e B, , denotes the set of vertices within distance r from v.
@ |P| denotes the length of P.

@ h denotes highway dimension.

e k denotes either h or O(hlogn) (exponential or poly-time
preprocessing).

@ Network diameter D.

Remarks

@ HD definition motivated by Transit Nodes.
@ Preprocessing based on Contraction Hierarchies ideas.
@ Analysis based on Reach ideas.
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Highway Dimension Motivation
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For a region, there is a small set of nodes such that all sufficiently long
shortest paths out of the region pass a node in the set.
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Highway Dimension Definition

Locally, a small set covers all long SPs.
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Highway Dimension Definition

Locally, a small set covers all long SPs.

Highway dimension (HD) h

V reR,YueV,3S C By, |S| <h, such that
V v,w € B4,
if Pis a SP: ¢(P(v,w)) > r and P(v,w) C B4y,
then P(v,w) NS # @.
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Highway vs. Doubling Dimension

Definition
A metric space has a doubling dimension w if every ball of radius r can
be covered by 2% balls of radius r/2.
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Highway vs. Doubling Dimension

Definition
A metric space has a doubling dimension w if every ball of radius r can
be covered by 2% balls of radius r/2.

Line: Small HD

r———0—0—0—§
\Y

A line has HD 7 and doubling dimension 1.
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Grid: High HD

A grid has HD ®(/n) and the doubling dimension 2.
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Shortest Path Covers

All SPs in a range can be covered by a sparse set.

(r, k) Shortest path cover ((r,k)-SPC):

A set C such that

V SPP:r<|P|l<2r=
PNC#® and
YuevV, |CﬂBu,2r|§k

Andrew V. Goldberg (MSR-SVC) Highway Dimension
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Shortest Path Covers

All SPs in a range can be covered by a sparse set.

(r, k) Shortest path cover ((r,k)-SPC):

A set C such that e ., °
[} P [ ]
V SPP:r<|P|<2r= o .
PNC#® and o .
YuevV, |CﬂBu,2r|§k
[
[ ]

v

Can use constants different from 4 and 2, but the constants are related.
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HD vs. SPC

Theorem
If G has highway dimension h, then¥ r 3 an (r,h)-SPC.

Proof idea: Show that S*, the smallest set that covers all shortest
paths P: r < |P| < 2r,is an (r,h)-SPC.
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Finding S* is NP-hard. Efficient construction?
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HD vs. SPC

Theorem
If G has highway dimension h, then¥ r 3 an (r,h)-SPC. ’

Proof idea: Show that S*, the smallest set that covers all shortest
paths P: r < |P| < 2r,is an (r,h)-SPC.

Finding S* is NP-hard. Efficient construction?

If G has highway dimension h, then for any r we can construct, in

Theorem
polynomial time, an (r,O(hlogn))-SPC.

Proof idea: Use the greedy set-cover algorithm to get an O(log n)
approximation of 5*.
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HD vs. SPC

Theorem
If G has highway dimension h, then¥ r 3 an (r,h)-SPC. ’

Proof idea: Show that S*, the smallest set that covers all shortest
paths P: r < |P| < 2r,is an (r,h)-SPC.

Finding S* is NP-hard. Efficient construction?

If G has highway dimension h, then for any r we can construct, in

Theorem
polynomial time, an (r,O(hlogn))-SPC.

Proof idea: Use the greedy set-cover algorithm to get an O(log n)
approximation of 5*.

Proofs depend on the choice of constants in the definitions.
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Generic Preprocessing

Preprocessing algorithm
@ LetSy = V. For1 <i < logD build (2/,k)-SPC covers S,.
@ LetL;=S;— Uﬁng S; (vertex partitioning into layers).
@ Order vertices so that L; comes before L, 1;
ordering inside layers is arbitrary.

@ Do shortcutting in this order to get E*.
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Generic Preprocessing

Preprocessing algorithm
@ LetSy = V. For1 <i < logD build (2/,k)-SPC covers S,.
@ LetL;=S;— Uﬁng S; (vertex partitioning into layers).
@ Order vertices so that L; comes before L, 1;
ordering inside layers is arbitrary.

@ Do shortcutting in this order to get E*.

Running time
Preprocessing is exponential (k = /) or polynomial
(k = O(hlogn))).
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Preprocessing Space

Lemma
Forv € L;, j > i, the number of (v,w) € E* withw € L; is at mostk.

Proof. (v, w) corresponds to P with internal vertices less than v, w.
Thus w € B, ,,i. The SPC definition implies the lemma.
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Preprocessing Space

Lemma
Forv € L;, j > i, the number of (v,w) € E* withw € L; is at mostk. J

Proof. (v, w) corresponds to P with internal vertices less than v, w.
Thus w € B, ,,i. The SPC definition implies the lemma.
Theorem

In (V,EUE™), vertex degrees are bounded by O(klog D) and
|[EUEY| = O(nklogD)
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Preprocessing Space

Lemma

Forv € L;, j > i, the number of (v,w) € E* withw € L; is at mostk.

Proof. (v, w) corresponds to P with internal vertices less than v, w.
Thus w € B, ,,i. The SPC definition implies the lemma.
Theorem

In (V,EUE™), vertex degrees are bounded by O(klog D) and
|[EUEY| = O(nklogD)

Things are better than the worst case in practice.
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RE Preprocessing

Remarks

e Reach bounds are in the graph with shortcuts.
@ Break ties based on hop count (prefer shortcuts).

Lemma
Ifv € L; then reach(v) < 2- 2.

Proof: Suppose the reach is greater. Then there is a shortest path P
that v divides into P; and P, with |P1], |P,| > 2 - 2%, Both P; and P,
contain vertices in L; with j > i, so there is a shortcut from Py to P,. But
then P is not a shortest path.

Additional work is linear.
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Query Time Bounds

Theorem
RE query takes O((klog D)?) time. J

Proof: Consider a forward search from s. In B, , »;, the search scans
only vertices of L; in B, ,i. Thus O(klog D) scans.
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Query Time Bounds

Theorem
RE query takes O((klog D)?) time.

Proof: Consider a forward search from s. In B, , »;, the search scans
only vertices of L; in B, ,i. Thus O(klog D) scans.

Remarks

@ Shortest path can be extracted in time linear in the number
of its arcs.

e Similar analysis for CH yields the same bound.
e Also develop a faster version of TN: O(klog D) query.
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Network Formation

Natural networks with constant highway dimension?
Attempt to model road networks

e Build on the Earth surface (low doubling dimension).
@ Build in decentralized and incremental manner.
e Highways are faster than local roads.

Capture some, but not all, real-life properties.
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Network Formation

Natural networks with constant highway dimension?
Attempt to model road networks
@ Build on the Earth surface (low doubling dimension).

@ Build in decentralized and incremental manner.
e Highways are faster than local roads.

Capture some, but not all, real-life properties.

Setting
@ Metric space (M, dist), doubling dim. log «, diameter D.
@ Speedup parameter § € (0,1).

@ Edge {v,w} has length dist(v, w) and transit time
7(v,w) = dist' °(v,w). (Long roads are fast.)
@ On-line network formation, adversarial vertex placement.
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Network Formation (cont.)

In the spirit of dynamic spanners [Gottlieb & Roditty 08].

@ Adversary adds vertices, we connect them.

@ Intuition: connect a new village to all nearby villages and to the
closest town.

@ Formally: maintain covers C; for 0 <i < logD.
Co =1V, Cii 1 C(;, vertices in C; are at least 2' apart.

@ When adding a new vertex v, add v to Cy, ..., C; for appropriate i.
(The first vertex added to all C’s.)

@ For0 <j <i,connectvto C;NB,g.,;.
@ If i <logD, connect v to the closest element of C; ;.

Theorem
The network has highway dimension of «©%) .
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Final Remarks

Summary

@ Intuitive and practical routing algorithms.

e Efficient implementations.

e Used in practice.

e Theoretical understanding and justification.

e Further research, e.g., improved bounds or algorithms for
other problems assuming small HD (TSP, vehicle routing,
etc.).

e Static problem solved, dynamic — active research area.

» Real time traffic.
» Historical data.
» Combination (prediction).
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Thank You!

SPA (Shortest Path Algorithms) project page
http://research.microsoft.com/en-us/projects/SPA/ J
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Questions?

0 Introduction and Motivation
e Definitions and Model
e Classical Algorithms

e Recent Algorithms
@ Reach
@ Contraction Hierarchies
@ Transit Nodes

© Theoretical Results
@ Highway Dimension
@ Theoretical Bounds

e Final Remarks
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