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Theory vs. Practice

[Anonymous]
Theory is when you know something, but it doesn’t work.

Practice is when something works, but you don’t know why.
Programmers combine theory and practice:
Nothing works and they don’t know why.

Bridging the theory–practice gap:

Algorithm Engineering
Know something ⇒ make it work.

Natural Science
Something works ⇒ explain why.

This talk
How and why modern routing algorithms work.

Andrew V. Goldberg (MSR-SVC) Highway Dimension 4/5/10 4 / 37



Theory vs. Practice

[Anonymous]
Theory is when you know something, but it doesn’t work.
Practice is when something works, but you don’t know why.

Programmers combine theory and practice:
Nothing works and they don’t know why.

Bridging the theory–practice gap:

Algorithm Engineering
Know something ⇒ make it work.

Natural Science
Something works ⇒ explain why.

This talk
How and why modern routing algorithms work.

Andrew V. Goldberg (MSR-SVC) Highway Dimension 4/5/10 4 / 37



Theory vs. Practice

[Anonymous]
Theory is when you know something, but it doesn’t work.
Practice is when something works, but you don’t know why.
Programmers combine theory and practice:
Nothing works and they don’t know why.

Bridging the theory–practice gap:

Algorithm Engineering
Know something ⇒ make it work.

Natural Science
Something works ⇒ explain why.

This talk
How and why modern routing algorithms work.

Andrew V. Goldberg (MSR-SVC) Highway Dimension 4/5/10 4 / 37



Theory vs. Practice

[Anonymous]
Theory is when you know something, but it doesn’t work.
Practice is when something works, but you don’t know why.
Programmers combine theory and practice:
Nothing works and they don’t know why.

Bridging the theory–practice gap:

Algorithm Engineering
Know something ⇒ make it work.

Natural Science
Something works ⇒ explain why.

This talk
How and why modern routing algorithms work.

Andrew V. Goldberg (MSR-SVC) Highway Dimension 4/5/10 4 / 37



Theory vs. Practice

[Anonymous]
Theory is when you know something, but it doesn’t work.
Practice is when something works, but you don’t know why.
Programmers combine theory and practice:
Nothing works and they don’t know why.

Bridging the theory–practice gap:

Algorithm Engineering
Know something ⇒ make it work.

Natural Science
Something works ⇒ explain why.

This talk
How and why modern routing algorithms work.

Andrew V. Goldberg (MSR-SVC) Highway Dimension 4/5/10 4 / 37



Theory vs. Practice

[Anonymous]
Theory is when you know something, but it doesn’t work.
Practice is when something works, but you don’t know why.
Programmers combine theory and practice:
Nothing works and they don’t know why.

Bridging the theory–practice gap:

Algorithm Engineering
Know something ⇒ make it work.

Natural Science
Something works ⇒ explain why.

This talk
How and why modern routing algorithms work.

Andrew V. Goldberg (MSR-SVC) Highway Dimension 4/5/10 4 / 37



Theory vs. Practice

[Anonymous]
Theory is when you know something, but it doesn’t work.
Practice is when something works, but you don’t know why.
Programmers combine theory and practice:
Nothing works and they don’t know why.

Bridging the theory–practice gap:

Algorithm Engineering
Know something ⇒ make it work.

Natural Science
Something works ⇒ explain why.

This talk
How and why modern routing algorithms work.

Andrew V. Goldberg (MSR-SVC) Highway Dimension 4/5/10 4 / 37



Recent Developments

Continent-sized road networks have 10s of millions intersections.

Dijkstra’s algorithm: ≈ 5 s

Recent work
Arc flags [Lauther 04, Köhler et al. 06].
A∗ with landmarks [Goldberg & Harrelson 05].
Reach [Gutman 04, Goldberg et al. 06].
Highway hierarchies [Sanders & Schultes 05].
Contraction hierarchies [Geisberger et al. 08].
Transit nodes [Bast et al. 06].
DIMACS Shortest Paths Implementation Challenge (2005–2006).

Greatly improved performance: < 1 ms, ≈ 0.1 s on a mobile device.
Only a few hundred intersections searched.
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Definitions and Model

Input
Graph G = (V, E) (intersections, road segments), |V| = n,
|E| = m.
Weight function ` (length, transit time, fuel consumption, ...).
Static problem, G and ` incorporate all modeling information.

Query (multiple times for the same input network)
Given origin s and destination t, find optimal path from s to t.
Exact algorithms help modeling and debugging.

Algorithms with preprocessing
Two phases: practical preprocessing and real-time queries.
Preprocessing output not much bigger than the input.
Preprocessing may use more resources than queries.
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Dijkstra’s Algorithm

[Dijkstra 1959], [Dantzig 1963].

Dijkstra’s Algorithm
Examine vertices in the order of their distance from s.
Stop when t is reached.

Reverse Algorithm
Run algorithm from t in the graph with all arcs reversed.
Stop when s is reached.

Bidirectional Algorithm
Run forward Dijkstra from s and backward from t.
Stop when the searches meet.
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Example Graph

1.6M vertices, 3.8M arcs, travel time metric.

Andrew V. Goldberg (MSR-SVC) Highway Dimension 4/5/10 8 / 37



Dijkstra’s Algorithm

Searched area
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Bidirectional Algorithm

forward search/ reverse search
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Reach Algorithm

Pruning leads to amazing speedup.
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Three Recent Algorithms

Algorithm intuition

Reach pruning (RE): Local intersections far from
origin/destination can be ignored.

Highway/contraction hierarchies (CH): Shortest path goes
from local roads to local highways to global highways to
local highways to local roads.
Transit nodes (TN): For any region, a small number of “toll
booths” covers all sufficiently long optimal in/out paths.

These intuitive ideas can be mathematically formalized and lead to
provably correct algorithms which work very well on road networks.
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Reach Fundamentals

[Gutman 04; Goldberg et al. 06]

Preprocessing computes
intersection locality.

Query uses locality to prune
search.

Definition of reach
Consider a vertex v that splits
a path P into P1 and P2.
rP(v) = min(`(P1), `(P2)).
r(v) = maxP(rP(v)) over all
shortest paths P through v.
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Pruning Search Using Reach

Pruning

If r(w) < min(d(v) + `(v, w), LB(w, t)) then prune w.

Lower bounds for nothing

Rt

LB(w,t)
d(s,v) wv

ts

Bidirectional search gives implicit bounds (Rt below).
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RE Algorithm

RE Query
Bidirectional Dijkstra’s algorithm with pruning based on reaches.
A small change to Dijkstra’s algorithm.

Remarks

O(nm) perprocessing impractical on large graphs.
Fast heuristic preprocessing computes reach upper bounds.
Shortcuts speed up both preprocessing and query.
CH algorithm shows that shortcuts are crucial.

Andrew V. Goldberg (MSR-SVC) Highway Dimension 4/5/10 15 / 37



RE Algorithm

RE Query
Bidirectional Dijkstra’s algorithm with pruning based on reaches.
A small change to Dijkstra’s algorithm.

Remarks

O(nm) perprocessing impractical on large graphs.
Fast heuristic preprocessing computes reach upper bounds.
Shortcuts speed up both preprocessing and query.
CH algorithm shows that shortcuts are crucial.

Andrew V. Goldberg (MSR-SVC) Highway Dimension 4/5/10 15 / 37



Shortcut Operation

[Sanders & Schultes 05]
The key operation for Contraction Hierarchies algorithm

101

1 10

100

11

110

A shortcut arc can be omitted if redundant (alternative path exists).

Andrew V. Goldberg (MSR-SVC) Highway Dimension 4/5/10 16 / 37



Contraction Hierarchies

[Geisberger et al. 08]
Preprocessing orders vertices,
order corresponds to locality. Both
forward and reverse searches
consider only “up” (more local to
more global) edges. Effective
pruning.

Preprocessing Algorithm

1 Heuristically order vertices.
2 Shortcut vertices in that order.
3 To the original graph, add all

shortcuts introduced in step 2.
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Contraction Hierarchies
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Preprocessing orders vertices,
order corresponds to locality. Both
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consider only “up” (more local to
more global) edges. Effective
pruning.

Preprocessing Algorithm
1 Heuristically order vertices.
2 Shortcut vertices in that order.
3 To the original graph, add all

shortcuts introduced in step 2.

Query algorithm
Run a modified bidirectional
Dijkstra’s algorithm.

The searches only consider
“up” edges.
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Transit Node Intuition

For a region, there is a small set of nodes such that all sufficiently long
shortest paths out of the region pass a node in the set.
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TN Preprocessing

[Bast et al. 06]

Basic concepts

Divide a map into regions (a few thousand).
For each region, optimal paths to far away places pass
through one of a small number of access nodes (≈ 10 on
the average).
The union of access nodes is the set of transit nodes
(≈ 10 000).

Preprocessing Algorithm
Find access nodes for every region.
Connect each vertex to its access nodes.
Compute all pairs of shortest paths between transit nodes.
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TN Query

Long-range query algorithm
The shortest path has the form
s – access(s) – access(t) – t

Table look-up for the
(access(s), access(t)) node
pairs.

Remarks

Very fast: 10× 10 table look-ups per long-range query.
Local queries: another method or hierarchical approach.
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Theoretical Results

Practice

Intuitive and practical algorithms, but...
Why do they work well on road networks?
What is a road network (formally)?

Theory [Abraham, Fiat, Goldberg & Werneck 10]

Define highway dimension (HD).
Good time bounds for the three algorithms assuming HD is
small.
Analysis highlights algorithm similarities.
Generative model of small HD networks (road network
formation).

In the spirit of the small world model [Milgram 67, Kleinberg 99].
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Definitions and Remarks

Definitions and assumptions

Constant maximum degree.
Bv,r denotes the set of vertices within distance r from v.
|P| denotes the length of P.
h denotes highway dimension.
k denotes either h or O(h log n) (exponential or poly-time
preprocessing).
Network diameter D.

Remarks

HD definition motivated by Transit Nodes.
Preprocessing based on Contraction Hierarchies ideas.
Analysis based on Reach ideas.
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Highway Dimension Motivation

For a region, there is a small set of nodes such that all sufficiently long
shortest paths out of the region pass a node in the set.
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Highway Dimension Definition

Locally, a small set covers all long SPs.

Highway dimension (HD) h

∀ r ∈ <, ∀u ∈ V, ∃S ⊆ Bu,4r, |S| ≤ h, such that
∀ v, w ∈ Bu,4r,

if P is a SP: `(P(v, w)) > r and P(v, w) ⊆ Bu,4r,
then P(v, w) ∩ S 6= ∅.
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Highway vs. Doubling Dimension

Definition
A metric space has a doubling dimension α if every ball of radius r can
be covered by 2α balls of radius r/2.

Line: Small HD

v

A line has HD 7 and doubling dimension 1.
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Grid: High HD

A grid has HD Θ(
√

n) and the doubling dimension 2.
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Shortest Path Covers

All SPs in a range can be covered by a sparse set.

(r, k) Shortest path cover ((r, k)-SPC):
A set C such that

∀ SP P : r < |P| ≤ 2r ⇒
P∩ C 6= ∅ and
∀u ∈ V, |C∩ Bu,2r| ≤ k

Can use constants different from 4 and 2, but the constants are related.

Andrew V. Goldberg (MSR-SVC) Highway Dimension 4/5/10 27 / 37

2r

u

P



Shortest Path Covers

All SPs in a range can be covered by a sparse set.

(r, k) Shortest path cover ((r, k)-SPC):
A set C such that

∀ SP P : r < |P| ≤ 2r ⇒
P∩ C 6= ∅ and
∀u ∈ V, |C∩ Bu,2r| ≤ k

Can use constants different from 4 and 2, but the constants are related.

Andrew V. Goldberg (MSR-SVC) Highway Dimension 4/5/10 27 / 37

2r

u

P



HD vs. SPC

Theorem
If G has highway dimension h, then ∀ r ∃ an (r, h)-SPC.

Proof idea: Show that S∗, the smallest set that covers all shortest
paths P : r < |P| ≤ 2r, is an (r, h)-SPC.

Finding S∗ is NP-hard. Efficient construction?

Theorem
If G has highway dimension h, then for any r we can construct, in
polynomial time, an (r, O(h log n))-SPC.

Proof idea: Use the greedy set-cover algorithm to get an O(log n)
approximation of S∗.

Proofs depend on the choice of constants in the definitions.
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Generic Preprocessing

Preprocessing algorithm

Let S0 = V. For 1 ≤ i ≤ log D build (2i, k)-SPC covers Si.

Let Li = Si −
⋃log D

i+1 Sj (vertex partitioning into layers).
Order vertices so that Li comes before Li+1;
ordering inside layers is arbitrary.
Do shortcutting in this order to get E+.

Running time
Preprocessing is exponential (k = h) or polynomial
(k = O(h log n))).
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Preprocessing Space

Lemma
For v ∈ Li, j ≥ i, the number of (v, w) ∈ E+ with w ∈ Lj is at most k.

Proof. (v, w) corresponds to P with internal vertices less than v, w.
Thus w ∈ Bv,2·2i . The SPC definition implies the lemma.

Theorem
In (V, E∪ E+), vertex degrees are bounded by O(k log D) and
|E∪ E+| = O(nk log D)

Things are better than the worst case in practice.
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RE Preprocessing

Remarks

Reach bounds are in the graph with shortcuts.
Break ties based on hop count (prefer shortcuts).

Lemma
If v ∈ Li then reach(v) ≤ 2 · 2i.

Proof: Suppose the reach is greater. Then there is a shortest path P
that v divides into P1 and P2 with |P1|, |P2| > 2 · 2i. Both P1 and P2
contain vertices in Lj with j > i, so there is a shortcut from P1 to P2. But
then P is not a shortest path.

Additional work is linear.
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Query Time Bounds

Theorem
RE query takes O((k log D)2) time.

Proof: Consider a forward search from s. In Bs,2·2i , the search scans
only vertices of Li in Bs,2·2i . Thus O(k log D) scans.

Remarks

Shortest path can be extracted in time linear in the number
of its arcs.
Similar analysis for CH yields the same bound.
Also develop a faster version of TN: O(k log D) query.
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Network Formation

Natural networks with constant highway dimension?

Attempt to model road networks

Build on the Earth surface (low doubling dimension).
Build in decentralized and incremental manner.
Highways are faster than local roads.

Capture some, but not all, real-life properties.

Setting
Metric space (M, dist), doubling dim. log α, diameter D.
Speedup parameter δ ∈ (0, 1).
Edge {v, w} has length dist(v, w) and transit time
τ(v, w) = dist1−δ(v, w). (Long roads are fast.)
On-line network formation, adversarial vertex placement.
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Network Formation (cont.)

In the spirit of dynamic spanners [Gottlieb & Roditty 08].

Adversary adds vertices, we connect them.
Intuition: connect a new village to all nearby villages and to the
closest town.
Formally: maintain covers Ci for 0 ≤ i ≤ log D.
C0 = V, Ci+1 ⊆ Ci, vertices in Ci are at least 2i apart.
When adding a new vertex v, add v to C0, . . . , Ci for appropriate i.
(The first vertex added to all C’s.)
For 0 ≤ j ≤ i, connect v to Cj ∩ Bv,6·2j .
If i < log D, connect v to the closest element of Ci+1.

Theorem
The network has highway dimension of αO(1).
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Final Remarks

Summary

Intuitive and practical routing algorithms.
Efficient implementations.
Used in practice.
Theoretical understanding and justification.
Further research, e.g., improved bounds or algorithms for
other problems assuming small HD (TSP, vehicle routing,
etc.).
Static problem solved, dynamic – active research area.

I Real time traffic.
I Historical data.
I Combination (prediction).
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Thank You!

SPA (Shortest Path Algorithms) project page
http://research.microsoft.com/en-us/projects/SPA/
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Questions?

1 Introduction and Motivation

2 Definitions and Model

3 Classical Algorithms

4 Recent Algorithms
Reach
Contraction Hierarchies
Transit Nodes

5 Theoretical Results
Highway Dimension
Theoretical Bounds

6 Final Remarks
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