Basic graph theory definitions for computer science

John MacCormick
Dickinson College

September 2014

Many concepts in computer science are related to graphs, so it’s important to know some graph
terminology. Figure 1 demonstrates the five most important concepts, which are:

e A graph is a collection of vertices with edges between some of the vertices. Sometimes we call
this an undirected graph, because the edges have no direction.

e A path is a sequence of vertices with an edge between each pair of consecutive vertices.
e A cycle is a path that starts and ends at the same vertex.

o A directed graph is the same as a graph, but with directed edges.

o A weighted graph is the same as a graph, but each edge has a numerical weight.

Various obvious combinations of these definitions are possible, such as directed weighted graphs,
directed cycles and directed paths. A graph is connected if there’s a path between every pair of
nodes.

We often use graphs, paths, and so on as inputs and outputs to computer programs. One easy
way to deal with input and output is to use ASCII strings. Fortunately, it’s easy to convert graphs,
paths, and other graph-theoretoric concepts into ASCII strings. The exact conventions for doing
so are not important, but the right column Figure 1 shows one possible way of doing this, for each
of the five main object types.

Trees and rooted trees

Trees and rooted trees are special kinds of graphs that are often encountered in computer science.
Their definitions are as follows:

e A tree is a connected graph with no cycles. Figure 2(a) gives an example.

e A rooted tree is a tree in which one of the nodes has been designated the root of the tree.
Figure 2(b) gives an example. This is exactly the same tree as in (a), but now node d has been
designated the root. Note that we can lay out a rooted tree in levels: the root is at level 0, its
neighbors are at level 1, and so on. This also gives us a notion of parent and child nodes. The
parent of a node is its neighbor in the level above; the children of a node are its neighbors in
the level below. In Figure 2(b), for example, the parent of k is ¢, and the children of g are
a, b, and f. Sometimes, the exact order of laying out the tree is important. In these cases,
we can sort the children of a node according to some agreed ordering, from left to right. For
example, in Figure 2(b), children are sorted lexigraphically (i.e. in dictionary order) from left



b

graph ; \ “a,b a,c b,d c,d d,e”
b

path \ ! “a,b,d,e”
b

cycle D—‘ “a,b,d,c”

o—>
directed graph \ “a,b c,a b,d d,c d,e”
>0

c d e

a 7 b

. “a,b,? a,C,3 b:d’2

c d e

Figure 1: Graph concepts. The right column shows possible ASCII string representations of the
corresponding examples.

level 0
level 1
level 2

i level 3

Figure 2: (a) A tree with 11 nodes. (b) The same tree, this time represented as a rooted tree with
root node d.



Y

Figure 3: Depth-first (left) and breadth-first (right) order for visiting the nodes in a rooted tree.

to right. That’s why the children of g are listed in the order a, b, £, for example. A node
with no children is called a leaf. In Figure 2(b), the leaves are: j.k,e,a,b,h,i. You may have
noticed that, in computer science, rooted trees are upside down. Whereas a real-world tree
has its roots at the bottom and leaves at the top, computer science trees have the root at the
top and leaves at the bottom. Get used to it!

In practice, rooted trees are so common in computer science that they are often simply called
“trees”. It’s usually clear from the context whether or not a tree has a designated root. And we
can easily convert a tree into a rooted tree by selecting any node as the root.

Often, we want to search a (rooted) tree to find a particular node. There are two common
methods of searching trees: depth-first and breadth-first. These are both demonstrated in Figure 3.
In a depth-first search, the children of a node N are always visited before moving on to the next
sibling of node N. Breadth-first works the opposite way: the siblings of N are visited before its
children. A simple way to think of breadth-first search is that we scan each level in turn, from left
to right. In contrast, depth-first search always goes as deep as possible into the tree, keeping to the
left. The search only moves up or to the right when everything below the current node has already
been explored.



