
1

File Systems

Dickinson College

Computer Science 354

slides courtesy of Professor Grant Braught

Road Map

� Past:
� What an OS is, why we have them, what they do.

� Base hardware and support for operating systems

� Process Management

� Process Scheduling

� Multi-Threading

� Thread Synchronization

� Present:
� File Systems

� Future:
� Memory management

� Protection and Security

File Systems Outline

�Hard disk structure

�Perspective gap

�User perspective

�Programmer perspective

�Operating system perspective

Hard Disk Structure

� Hard Disks:

� Basic hard disk controller

can:

� Read a sector (or block)

�Write a sector (or block)

� Sector to read/write is

specified by a

cylinder:head:sector (CHS)

address.

�Most disk controllers

use linear block

addressing (LBA).

Image from: Linux System Administrators Guide
http://www.tldp.org/LDP/sag/html/hard-disk.html

Perspective Gap

�User Perspective:

�A disk is a collection of files and directories

that can be manipulated using commands.

�OS Perspective:

�A disk is a collection of data blocks that can

be manipulated via block numbers.

�It is the job of the OS to bridge the gap

between these two perspectives.

User’s Perspective

�A disk is a collection of files and
directories that can be manipulated using
commands.

�We’ll look at:

�Types of files supported

�Directory structures supported

�Information maintained

�Protection mechanisms

�Unix Commands

2

File Types

�From the user’s perspective operating

systems provide two basic types of files:

�Unstructured Files

�Structured Files

Unstructured Files

�With unstructured files, the OS provides system
calls for marshalling streams of bytes into and
out of blocks.
�The OS is ignorant of the internal structure of files.

�Each application must contain code to translate its
data to and from a byte stream.

Name

Address

Age Sex

City State

Phone #

byte stream

Application
Operating System

File

System b0

blocks

Structured Files

�With structured files the OS provides system

calls for marshalling records into and out of

blocks.

�The OS may provide direct support for records or it

may provide a way to associate user developed

marshalling routines with a file.

Name

Address

Age Sex

City State

Phone #

Application Operating System

File

System b0

blocks

Common Structured Files

�Every OS provides at least two types of

structured files:

�Executable files Directories

Magic Number

Text Seg Size

Data Seg Size

Entry Point

Text Segment

…

Data Segment

…

Header

Info

Name Date/Time Perms LocationOwner
Name Date/Time Perms LocationOwner
Name Date/Time Perms LocationOwner
Name Date/Time Perms LocationOwner
Name Date/Time Perms LocationOwner

…

Tree Structured Files

�Some OS’s provide structured files based on

trees (a.k.a. indexed).

�Records are requested based on key value instead of

location within the file.

�The tree structure provides rapid access to a record

based on its key value.

Ant Fox Pig

Cat Cow Dog Goat Lion Pig Pony Rat Worm

Hen Ibis Lamb

Structured Files in the Mac OS

�In the Mac OS file system, all files have

two parts:

�Data Fork:

�Unstructured byte stream

�Program instructions and data are stored in the

data fork

�Resource Fork:

�Structured collection of records recognized by the

OS

�User interface components, icons, file type and

creator information is stored in the resource fork.

3

Binary and Text
�Files can also be classified by the way in which
their data is stored:
�Text Files

�ASCII
• Data is stored character by character using ASCII codes

• ‘A’ is stored as 01000001 (65)

• ‘1’ is stored as 00110001 (49)

• One byte per character.

• E.g. Storing 1234567 takes 7 bytes.

�Unicode
• 2 bytes per character

�Binary Files
�Character data is stored using ASCII codes.

�Numeric data is stored in binary representation.

• Storing 1234567 as an int takes 4 bytes.

Random OS Humor

�"The box said, Win95 or better required...

so I used a Mac !”

Tim Scoff.

Directory Structures

�Different OS’s support different types of

directory (i.e. folder) structures:

�Single Level

�Hierarchical

�Acyclic Graph

�Graph

Single Level (flat) Directories

�Some early OS’s supported only a flat

directory structure.

/

file1 file2 file3 fileN…

Hierarchical Directories

�Hierarchical (tree) directory structure

allows for directories to be nested inside of

other directories.
/

file1 dir1 dir2 fileN…file2

fileA fileB dirA

fileX fileY

fileP fileQ

Acyclic Graph Directories

�Acyclic graph directories allow for links

that make a directory or file appear in

more than one location - so long as no

cycles are formed.
/

file1 dir1 dir2 fileN…file2

fileA fileB dirA

fileX fileY

fileP fileQ

4

Graph Directories

�A graph directory structure, removes the

restriction that links may not create a

cycle.

/

file1 dir1 dir2 fileN…file2

fileA fileB dirA

fileX fileY

fileP fileQ

File and Directory Information

�For each file and directory, the operating

system typically maintains the following

information that can be seen by users:

�name, size

�creation date, creation time

�last modified date, last modified time

�owner, permissions

�Use ls -l in Unix to see some of this information.

Permissions

�Permissions determine which users are

allowed to access a given file or directory

and in what ways they may access it.

�In Unix permissions are expressed using 3

sets of 3 bits each.

r w x

�Owner 1 1 0 (6)

�Group 1 0 0 (4)

�World 0 0 0 (0)

Unix File Manipulation

�In Unix users manipulate files and

directories using a variety of commands:

�ls

�rm mv cp

�mkdir rmdir cd

�chmod chown

�ln symlink

Random OS Cartoon

The Programmer’s

Perspective

5

Programmers Perspective

�From the programmer’s perspective a disk
contains files and directories that can be
manipulated via library functions (or via system
calls).

�We’ll look at:
�Review libraries and system calls

�File access

�System calls for file manipulation

�Read/Write buffering

�File locking

�System calls for directory manipulation

Programmer’s Perspective

�The programmer typically accesses and

manipulates files and directories using library

functions provided by a particular programming

language.

�Those library functions are wrappers for system calls

provided by the OS.

…

fprintf(f, “ABC”);

…

User Process

OS

Library

…
fprintf(…) {

…
SYSCALL 13;

…
return;

}

…

Function call

System call

Read/Write Pointers

�When a program opens a file, two pointers

are established (read and write).

�Pointers indicate the positions in the file at

which the next read or write operation will

occur.

… …

read

write

File Access Modes

�A file may be accessed in two modes:

�Sequential Access: Read and write pointers

are advanced only by file read and file write

operations.

�Random Access: Read and write pointers

may be repositioned within the file at any time

through the use of a special system call.

File Manipulation System Calls

�At a minimum every OS must provide

system calls for the following file

operations:

�create, delete

�open, close

�read, write

�seek

�get attributes, set attributes

Read/Write Buffering

�The operating system can only read and

write complete blocks of data at a time

while programs read and write bytes of

data via the system calls.

�To improve performance the OS will buffer a

block the first time it is accessed.

6

File Locking

�Having multiple processes accessing

shared files can result in critical sections

and race conditions.

�Operating systems provide file locks to protect

critical sections and prevent race conditions

related to file access.

�Shared vs. exclusive locks

• Readers lock vs. Writers lock

�Advisory vs. mandatory locks

Directory System Calls

�At a minimum every OS must provide

system calls for the following directory

operations:

�open directory file, close directory file

�read directory file

�create entry, delete entry

�rename entry

Name Date/Time Perms LocationOwner
Name Date/Time Perms LocationOwner
Name Date/Time Perms LocationOwner
Name Date/Time Perms LocationOwner
Name Date/Time Perms LocationOwner

…

A Directory File

The Operating System’s

Perspective

The OS Perspective

�The OS must provide the data structures and

algorithms necessary to implement each of the

system calls.

�We’ll look at:

� Internal data structures

�Block Allocation and File Descriptors

�Directory file records

�Free space management

�Disk formatting / defragmenting

File / Dir Information

�The OS must maintain information about every
file and directory.
�For files that are not open the following information is
sufficient:
�Name, owner

�Permissions, times(creation/modified)

�Location, size

�For files that are open the following additional
information is necessary:
�Which process(es) have the file open.

�Locks

�Read/Write pointers

�Buffered blocks

File System Data Structures

�A file system uses four main data structures:

�File Structure: One for each file or directory that is

opened by a process.

�Open File ID Table: An array of pointers to all of the

Open File Structures. One for the entire system.

�Open File Structure: One for each file or directory that

is open.

�File Descriptor: One for every file or directory on the

disk is maintained on the disk. For each open file or

directory, the file descriptor is copied into memory.

7

File System Data Structures
Process Descriptor

PID: 72

...

Open Files:

File Structure

Open File ID: 3

Read Pointer: 785

Write Pointer: 342

Read Buffer:

Write Buffer:

Open File

ID Table

0

1

2

3

4

File Structure

Open File ID: 94

Read Pointer: 131

Write Pointer: 246

Read Buffer:

Write Buffer:

Open File Structure

Locked: false

Open Count: 4

Descriptor:

...

Open File Structure

Locked: true

Open Count: 1

Descriptor:

...

File Descriptor

<Name> <Owner>

<Permissions> <Size>

<Created> <Modified>

<Allocated Blocks>

Disk Block

Data

Disk Block

Data

Block Allocation Schemes

�When files are created or when they grow,

the OS must allocate unused block from

the disk to the file.

�Alternative schemes:

�Contiguous Allocation

�Linked List Allocation

�File Allocation Tables (FAT)

�Indexed Allocation

�Multilevel Indexed Allocation

Evaluating Allocation Schemes

�Several factors should be considered

when evaluating block allocation schemes.

�Access Mode

�Sequential access performance

�Random access performance

�Fragmentation

�Internal fragmentation: Space that is allocated to

the file but is unused.

�External fragmentation: Space that is free but

cannot be allocated to a file.

Contiguous Allocation

�With contiguous allocation, the space for a file is
allocated using consecutively numbered blocks.
�File descriptor only needs to store the starting block
and the number of blocks in the file.
�Drawbacks?

�Benefits?

�Modified contiguous allocation using extents.

File Descriptor:

<Name> <Owner>

etc…

<First Block>

<Number of Blocks>

Linked List Allocation
�Files are created with a single block. As files
grow, the last word in each block stores the
address of the next block.

�Benefits?

�Drawbacks?

data data data

Block 221 Block 37 Block 4194

File Descriptor:

<Name> <Owner>

etc…

<First Block>

File Allocation Tables
�The OS maintains a File Allocation Table (FAT)
for each disk.
�The FAT has one entry
for every disk block.

�File descriptor stores only
the starting block of the file.
�This is also an index into the FAT.

�Entries in the FAT are used
as a linked list to find the
remaining blocks of the
file.

null

k

2

0

1

2

3

4

5File Descriptor:

<Name> <Owner>

etc…

<First Block>

FAT

k

8

Indexed Allocation

�With indexed allocation each file descriptor
contains a list of the blocks making up the
file.

�Drawbacks?

�Benefits?

File Descriptor:

<Name>

etc…

<Blocks>

221

37

4194

null

0

1

2

…

3

x null

Indexed Allocation

�If we have a 16GB disk with a block size of

1KB and we want our maximum file size to

be 1GB in size, how much space is

required for the index entries in each file

descriptor?

Multilevel Indexed Allocation

�A direct index refers directly to a
disk block containing data from
the file.

�An indirect index refers to a disk
block that contains additional
index entries, each of which
refers to a disk block containing
data from the file.

File Descriptor:

221

37

0

1

2

…

574

<Name> etc…

<Direct Blocks>

4194

…

<Indirect Blocks>
919

2287

0

1

2

…

1311

Disk Block 574:

�With a multi-level index, the file
descriptor contains direct and indirect
indices.

Random Computer Humor

�"The computer allows you to make

mistakes faster than any other invention,

with the possible exception of handguns

and tequila."

— Mitch Ratcliffe.

Directory File Records

�Each operating system defines its own

structure for the records that appear within

the directory files.

�Examples:

�CPM

�DOS

�Unix

CPM Directory Records

�CPM is an old mainframe OS that used a flat
directory structure.
�The first several blocks on the disk are set aside to
hold the directory file.

�Every file on the disk has a record in the directory file.

�This record is also the File Descriptor in CPM.

9

DOS Directory Records

�DOS supported a hierarchical directory
structure.
�One sector at the start of the disk is set aside to hold
the directory file for the root directory.

�DOS Directory records are also the file descriptor.

�Each sub-directory has a block of directory entries
elsewhere on the disk.

Unix Directory Records

�Unix directory entries contain only part of
the information for the file descriptor.

�The remaining information is contained in an
inode.

The Unix Inode

�Unix inodes use

a multilevel

indexed

allocation

scheme to track

blocks allocated

to a file.

Unix

File System

7

�Inode #2

always holds

information

about the root

directory of the

disk.

Free Space Management

�The OS must also keep track of which

blocks on the disk are not yet allocated to

files or used for directory files (i.e. free

blocks).

�Several approaches:

�Bit vector

�Linked list

�Indexed

Bit Vectors

�Free disk blocks can be tracked using a bit

vector.

�00110100 00100011 11100011 1000…

�Each 0 indicates an allocated block.

�Each 1 indicates a free block.

�First free block:
�(# of 0 words) * (bits/word) + (offset of 1 in 1st non-zero

word)

• Finding offset of first 1in a word is often supported by a

ML instruction.

10

Linked Lists

�Free space can also be managed using a

linked list scheme.

�Can be modified to be a linked list of holes.

Free Free Free

Block 221 Block 37 Block 4194Free
List

Indexed

�Free space can also be tracked using an

indexed approach.

�Unix has used inodes 0 and 1 to track the free

blocks on a disk.

File System Efficiency

�What are several ways that the efficiency

of the original Unix file system could be

improved?

Crashes and Recovery

�File system operations must update the in-
memory data structures as well as the
information stored on disk.
�Allocated blocks, access times, free space list…

�Problems can occur if the system crashes when in-
memory data is out of synch with on-disk data or
when separate pieces of on-disk data are
inconsistent.
�Repair tools:

• fsck

• Chkdsk

Random OS Humor

�When one is told "Go fsck yourself!" the

meaning implied is to "go away, analyze

yourself, and fix your problems”

Wikipedia

Journaling File Systems

�In a journaling file system, all changes to

the file system are written to a journal

before applying them to the actual file

system.

�Physical journal

�Logical journal

11

Miscellaneous Other Topics

�Some other topics:

�File deleting vs. file erasing

�File recovery

�Disk formatting

�Full format vs. quick format

�Disk defragmenting

�Others??

