
1

Base Hardware

and OS Support

Operating Systems

Computer Science 354

Dickinson College

Spring 2008
slides courtesy of Professor Grant Braught

Outline

�Review of basic hardware capabilities

�The Bootstrap process

�Hardware support for OS

�Interfacing with the OS

�OS Architectures

Basic Hardware Assumptions

�Single CPU Machine

�Executes 1 instruction at a time

�Fetch / Decode / Execute

• Program Counter (PC): holds memory address for next

fetch.

• Instruction Register (IR): holds instruction for

decode/execute.

�Instruction execution is “atomic”.

�Programs store operands and results in

general purpose registers.

�Register contents are part of a process’ “context”.

Basic Hardware Assumptions

� Hard Disks:

� Basic hard disk controller

can:

�Read a sector (or block)

�Write a sector (or block)

� Sector to read/write is

specified by a

cylinder:head:sector

(CHS) address.

�Some disk controllers

also use linear block

addressing (LBA).

Image from: Linux System Administrators Guide
http://www.tldp.org/LDP/sag/html/hard-disk.html

Basic Hardware Assumptions

�Basic Input/Output System (BIOS)
�Contains a number of small programs and
subroutines:
�Power on self test (POST)

�System configuration utility

• Settings stored in small amount of battery backed CMOS
memory.

�A set of routines for performing basic operations on common
input/output devices.

• Read / write a specified C:H:S from disk.

• Read character from keyboard.

• Display character on the screen.

�OS bootstrap program

�Stored on a Flash ROM that is part of the computer’s
address space.
�CMOS for configuration is also in address space.

The Boot Sequence

� In the beginning… there is only the BIOS.
�The PC is initialized to the address of the POST
program contained in the BIOS

�The last instruction of the POST jumps to the address
of the bootstrap program, also contained in the BIOS.

�The bootstrap program uses the BIOS routines to
load the program contained in the boot sector of the
boot disk into memory at a known address.
�Boot sector = first sector on the disk (512 bytes).

�Boot disk is identified by data stored in the configuration
CMOS.

�The last instruction in the bootstrap program jumps to
the address at which the boot sector program was
loaded.

2

The Boot Sequence

�The boot sector program proceeds to load the
operating system… but usually not directly…
�The boot sector program typically loads a second
stage boot loader from disk.
�The second stage boot loader is stored in a known set of
contiguous sectors on the disk.

�The second stage boot loader knows how to read the file
system.

�The second stage boot loader finds the C:H:S
address of the OS kernel using its filename and then
uses the BIOS routines to load it into a known
location in memory.

�The final instruction of the second stage boot loader
jumps to the initialization routine within the OS kernel.

The Boot Sequence

�The initialization routine within the OS

kernel:

�Initializes internal OS data structures

�Loads device drivers and initializes devices

�Starts any services provided by the system

�FTP / HTTP / SSH / SMTP etc…

�Starts the user interface

�Command prompt / GUI / Login screen

• From there user commands generate new processes.

Boot Sequence Variants

�There are a number of twists on the boot
sequence depending on the particulars of the
system.
�Multiple bootable partitions (I.e. dual boot)

�Boot sector program presents a menu.

�User picks a boot partition.

�A new boot sector program is loaded from the first sector of
that partition and the process picks up from there.

�Shortcuts
�Some systems use larger BIOS bootstrap programs and omit
the boot sector program.

�Portable devices and small operating systems
�Entire OS can be stored in Flash ROM.

Random OS Quote

�Saying that XP is the most stable MS OS

is like saying that asparagus is the most

articulate vegetable.

Dave Barry

Hardware Support for OS

�All use of shared system resources must be

controlled by the operating system if it is to

provide:

�Protection

�Multiprogramming

�Timesharing

�Additional hardware is required to ensure that

the operating system can control all use of

shared resources.

Hardware Support for OS

�The hardware support that is required is

provided by:

�A mechanism for making system calls

�A mechanism for handling Interrupts

�Dual mode processor operation

�Base and limit registers for protecting

memory.

�A Timer hardware device

3

System Calls

�System calls are the mechanism by which

processes request resources and services

that are controlled by the operating

system.

�a.k.a. Trap, Software Interrupt

�A system call is sort of like a function call to a

function that is part of the operating system.

�The mechanism is just a little different.

System Calls

�When a process makes a system call, control is

transfers to the operating system. Code in the

operating system carries out the request and

eventually control is returned to the process.

f = open(“myFile.txt”, “RW”);

fprintf(f, “ABC”);

close(f);

User Process

Operating

System

System call

System Call Mechanisms
�A process makes a system call by executing a

special machine language instruction:

�SYSCALL TRAP INT

�Usually you do not see the system call instruction

because it is wrapped inside a language library (java /

c,c++ / etc).

…

fprintf(f, “ABC”);

…

User Process

OS

Library

…
fprintf(…) {

…
SYSCALL 13;

…
return;

}

…

Function call

System call

System Call Mechanisms

Operating

System
Library

…
fprintf(…) {

…
SYSCALL 29;

…
return;

}

…

29 write() {

OS code for

writing to a

file

}

Interrupt

Vector

�A system call causes control to

automatically transfer to the address

stored at the specified location in the

interrupt vector.

System Call Mechanisms

�Parameters for a system call can be passed to

the OS in three general ways:

�On the system stack

� In registers

� In a block of memory

�Different techniques are used for different system calls and

even for individual parameters of the same system call.

• E.g. Writing to a file. The file to write is usually indicated by an

integer passed in a register. The data to be written is passed

using a block of memory.

Interrupts

�An interrupt is a signal from a device

indicating that:

�An error has occurred.

�An event has occurred.

�Mouse has moved.

�Key has been pressed.

�An operation is complete.

�Data has been successfully written.

�Data is ready to be retrieved.

4

Interrupts

�When an interrupt occurs:

�The process that is executing is suspended.

�Control is automatically transferred to an

interrupt handler in the operating system.

�Each device has a unique interrupt number and

control is transferred to the interrupt handler using

the interrupt vector.

�The interrupt handler processes the interrupt

and control is returned to a user process.

Interrupts and

Multiprogramming

�Interrupts enable multiprogramming via:

�Interrupt driven I/O

�Direct memory access (DMA)

Dual Mode Operation

�To provide protection, modern processors
have two different modes of operation:

�User Mode

�Kernel Mode
�a.k.a. [System | Supervisor | System | Privileged]
Mode

�The processor mode is indicated by the mode
bit in the processor status word (PSW).
�0 = kernel mode

�1 = user mode

Kernel Mode

�All instructions that access shared

resources are made to be privileged

instructions.

�Privileged instructions may only be executed

when the processor is in kernel mode.

�Any attempt to execute a privileged instruction

in user mode results in an interrupt.

�The interrupt handler in the OS will then terminate

the offending process.

Dual Mode, Interrupts and

System Calls

�Every system call or interrupt

automatically switches the processor to

kernel mode before control transfers to the

operating system code.

�The OS then switches the kernel back to user

mode before returning control to a user

process.

Base and Limit Registers

�Base and Limit registers provide the

simplest mechanism for protecting

memory.
Operating

System

Process A

Process B

Free

0

2018

5214

9768

Memory

CPU ≥ <

Note: Assume CPU is executing Process A

2018 3196

Base Limit

+

yes yes

no no

Interrupt

3562

Address generated

during execution of

Process A

5

Timer Device

�Time sharing is enabled by the timer

device.

�The timer is usually implemented using a

fixed rate clock and a counter.

�The counter is set to a positive value.

�The value of the counter is then decremented on

each tick of the clock.

�When the counter reaches 0 an interrupt is

generated.

Random OS Quote

�One of the main advantages of Unix over,

say, MVS, is the tremendous number of

features Unix lacks.

Chris Torek

OS Implementation

Implementing Operating

Systems

�Some of the design decisions faced in

implementing an operating system include:

�System software vs. OS kernel

�Separation of mechanism and policy

�Kernel architecture

System Software vs. Kernel

�Many services can be implemented either

in the OS kernel or as a processes that

can be run in user mode.

Mechanism and Policy

�Policies are likely to change over time and

thus should be separate from the

mechanisms used to enforce them.

�An ideal mechanism is general enough to

support a wide range of policies.

6

Kernel Architecture

�There are roughly 4 major architecture

alternatives for OS Kernel design:

�Monolithic (a.k.a. Simple) Structure

�Layered Structure

�Microkernel Structure

�Modular Structure

Monolithic Kernels

� In a monolithic kernel nearly all OS functionality
is contained in a single software module.
� “… the ‘Big Mess’. The structure is that there is no
structure.”

Tannenbaum

�Benefits?

�Drawbacks?

�Examples:
�MS-DOS

�Original UNIX

MS-DOS Kernel

Application Programs

MS-DOS Kernel

MS-DOS Device Drivers

BIOS Device Drivers

Physical Hardware

Original UNIX Kernel

User Applications and System Software

System Call Interface

Device Drivers

Physical Hardware

Process Management

Memory Management

Device Management

Storage Management

Protection

Security

Operating

System

Kernel

Layered Kernels

�OS is designed in
layers such that:

�Each layer uses
only the services
provided by the
next lower layer.

�The services
provided by each
layer are defined by
a public interface.

Hardware

...

Micro-Kernels

� With a micro-kernel only
that functionality that
actually requires kernel
mode is included in the
kernel.
� Basic process and memory

management

� Message passing

� Keep kernel policy free.

� All other functionality is
implemented as separate
processes that execute in
user mode.

micro-Kernel

Storage

Manager

Virtual

Memory

User Process

7

Modular Kernels

�Modular kernels have a core set of

capabilities (almost a micro-kernel) but

then also allow other modules to be

dynamically added to the kernel during

boot or during execution.

Virtual Machines

�Virtual machines provide a mechanism for

hosting multiple independent operating

systems on a single machine.

VMWare

�The VMWare
virtualization later
runs as an
application on a host
operating system.

�This application
appears to the guest
operating system as
if it is a complete
machine with its own
CPU, memory and
I/O devices. Image from VMWare Whitepaper.

Random OS Quote

�We just don't think a Linux partition on a

mainframe makes a lot of sense. It's kind

of like having a trailer park in the back of

your estate.

Scott McNealy

Road Map

�This topic:
�Base hardware and support for operating systems.

�OS designs and implementation

�Next topic:
�Process management

�Later:
�Concurrent programming

�Memory management

�Storage management

�Protection and Security

