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Road Map

� Past:
� What an OS is, why we have them, what they do.

� Base hardware and support for operating systems

� Process Management

� Process Scheduling

� Multi-Threading

� Thread Synchronization

� File Systems

� Present:
� Memory management

� Future:
� Protection and Security

Memory Management Outline

�With respect to memory management, 

we’ll examine the following topics:

�Basic hardware capabilities

�Logical vs. Physical addresses

�Absolute vs. relative programs

�Address binding

�Multiprogramming and Memory

�Virtual Memory

Basic Hardware Capabilities

�Assumptions about basic computer hardware:

�For instructions to be executed, or data to be 

accessed,  they must be contained in main memory.

�Program execution generates a stream of memory 

references that are sent from the CPU to the memory 

management unit, which controls access to the main 

memory.

�Load address 1000 into R3

�Write R2 to address 4319

CPU
Main

MemoryMMU

Logical vs. Physical Addresses

�The addresses issued by a program to the 

MMU are called logical addresses.

�Addresses issued by the MMU to the main 

memory are called physical addresses.

CPU
Main

MemoryMMU

Logical
Addresses

Physical
Addresses

Absolute vs. Relative Programs

�In an absolute program the memory 
addresses contained in the program 
correspond directly to physical memory 
addresses 

�logical addresses = physical addresses
�Very intuitive and easy to implement.

�Drawbacks?

�In a relative program the memory 
addresses contained in the program are 
relative to the start of the program.
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Address Binding

�Address binding is the process of 

translating logical addresses to physical 

addresses.

�Address binding techniques:

�Compile time

�Load time

�Run time

Compile Time Address Binding

�With compile time address binding, the 

compiler produces an absolute program.

�The base address at which the executable 

program will be loaded must be provided to 

the compiler.

�The resulting program must always be loaded 

at the same location in physical memory.

�MS-DOS .COM format.

Load Time Address Binding

�With load time address binding, a special 

program called a loader produces an 

absolute program as a program is loaded 

into physical memory.

�The loader translates all logical addresses 

within the program to physical addresses.

Run Time Address Binding

�With run time address binding, logical 

addresses are translated to physical 

address as the program executes.

�The program issues relative addresses to the 

MMU which translates them to physical 

addresses.

Relocation Register

�A relocation register provides a 

simple means of performing run 

time address binding for relative

programs.
Operating 

System

Process A

Process B

Free

0

2018

5214

9768

Memory

CPU ≤

Note: Assume CPU is executing Process A

3196 2018

Limit Relocation

+
yes

no

Interrupt

1048

Logical address 

generated during 

execution of Process A

2056

Physical address 

corresponding to

logical address

1048

Tradeoffs

�What tradeoffs exist between the different 

address binding schemes?

Compile time: 

Do it once -loads fast / runs fast.

Can’t relocate program.

Load time:

Have to translate every time the program is loaded which will cause 

programs to load slowly.

Once loaded it runs fast.

Run time:

Programs load fast.

Translation during run time slows down execution.
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Unix / Linux Bashing

�"Linux is only free if your time is 

worthless.”

�"Unix is user-friendly. It's just very 

selective about who its friends are." 

Multiprogramming and Memory

�With multiprogramming, the OS shares the 

physical memory among multiple 

processes that are running concurrently.

�The OS can allocate memory to processes 

using two types of schemes:

�Contiguous Allocation Schemes

�Non-contiguous memory allocation schemes

Contiguous Allocation Schemes

�With contiguous allocation each process is 

stored as a whole in a contiguous range of 

physical memory addresses.

�Approaches:

�Fixed size partitions

�Variable size partitions

Fixed Size Partitions

�The OS divides physical 
memory into a number 
of fixed size regions.

�When a process is to be 
loaded into memory, the 
OS loads it into one of 
these regions.
�Best Fit: The process is 
loaded into the smallest 
free region that satisfies its 
space requirements.

Operating

System

Region 3

Region 2

Region 1

Region 0 N0 bytes

N1 bytes

N2 bytes

N3 bytes

Variable Size Partitions

�The OS allocates variable 

sized regions of memory 

based on the size 

requirements of each 

process.

�Each time a process is to be 

loaded into memory a free 

region of sufficient size must 

be found.

Operating

System

Process 1

Process 3

Process 0

Process 2

0

1000

1200

2800

5400
5500

8500

8900

9600
MAX

Variable Size Partitions

�With variable size 

partitions, the OS must 

keep track of the free 

regions of memory.

�This is often done using a 

hole list.

HoleList:

Start: 1000

Size: 200

Start: 5400

Size: 100

Start: 8500

Size: 400

Start: 9600

Size: 10400

Operating

System

Process 1

Process 3

Process 0

Process 2

0

1000

1200

2800

5400
5500

8500

8900

9600
MAX
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Allocation Strategies
� Allocating space using variable size partitions requires 

that the OS have a policy for selecting the hole for a 

process:

� Best Fit: Select the smallest hole that satisfies the request.

� Worst Fit: Select largest hole that satisfies the request.

� First Fit: Select the first hole that satisfies the request.

�Always start checking holes from the start of the list.

� Next Fit: Select the next hole that satisfies the request.

�Use a pointer to keep track of the last hole that was checked, and 

continue checking holes from that point for the next request.

Dealing with Fragmentation

�With variable size partitions, external 

fragmentation can become a significant 

issue.

�Mitigating external fragmentation:

�Hole compaction

�Memory compaction

Swapping

�Partitioning can be combined with 

swapping to further increase the number 

of programs available for 

multiprogramming.

OS

Physical

Memory

P4

Disk

Secondary Memory

P2
P4

1000

MAX

P1

Non-Contiguous Allocation

�With non-contiguous allocation, a process 

can be divided into pieces (pages or 

segments), each of which is stored in a 

different area of physical memory.

�Approaches:

�Paging

�Segmentation

Paging
� In Paging:

�Processes are divided into fixed size chunks called 

pages.

�Physical memory is divided into fixed size areas, of 

the same size,called page frames.

�Every page in a process is stored in 

a page frame.

�The MMU binds logical addresses

to physical addresses at run time 

using a page table.

Page 1

Page 2

Page 3

Logical
Memory

Page 0

Page
Table

page
frames

Page 2

Physical
Memory

Page 0

Page 1

Page 3

2

Frame 0

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Frame 6

Frame 7

5
1
7

0

1
2
3

Paging

�To share physical memory among multiple 

processes, the OS maintains a page table 

for each process.

Page 1

Page 2

Page 3

Process A
Logical
Memory

Page 0

Process A
Page Table

Page 2

Physical
Memory

Page 0

Page 1

Page 3

2

Frame 0

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Frame 6

Frame 7

5
1
7

0

1
2
3

Page 1

Page 2

Page 3

Process B
Logical
Memory

Page 0

Process B
Page Table

6
3
0
4

0

1
2
3

Page 0

Page 1

Page 2

Page 3



5

Address Binding With Paging
� We can think of logical addresses as being 

divided into two parts, the page and the 

offset within the page.

� The MMU uses the page table to translate the

page into the page frame. Combining the page 

frame with the offset to produces the physical 

address.

CPU 2 12

Logical Address

2
5
1
7

0

1
2
3

Page Offset

1 12

Physical Address

Frame

Offset

Page 2

Physical
Memory

Page 0

Page 1

Page 3

fr0

fr1

fr2

fr3

fr4

fr5

fr6

fr7

MMU

Page

Table

CPU 2 12

Logical Address

2
5
1
7

0

1
2
3

Page Offset

1 12

Physical Address

Frame

Offset

Page 2

Physical
Memory

Page 0

Page 1

Page 3

fr0

fr1

fr2

fr3

fr4

fr5

fr6

fr7

MMU

Page

Table

Address Binding with Paging

� In a paging system the logical address space is viewed 
as a contiguous array of bytes.
� Logical addresses are actually specified in binary.

�We must now think of the high order bits as 
specifying the page and the  low order bits as 
specifying the offset within the page.

� Example: 

�Logical address space with 
4 pages of 4 bytes each.

• 2 bits needed to specify the page.

• 2 bits needed to specify the offset.

�E.g. Address 1101 (1310) is at offset 1
in page 3.

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011

1100
1101
1110
1111

Page 0

Page 1

Page 2

Page 3

Address Binding with Paging

�The example from earlier, now in binary.

CPU 10 1100

Logical Address

2
5
1
7

0

1
2
3

Page Offset

01 1100

Physical Address

Frame

Offset

Page 2

Physical
Memory

Page 0

Page 1

Page 3

fr0

fr1

fr2

fr3

fr4

fr5

fr6

fr7

MMU

Page

Table

Operating System Role in 

Paging

�Address binding with paging is performed 

in hardware by the MMU.  However, the 

OS must:

�Keep track of free frames

�Allocate frames to processes

�Create page tables for each process

�Swap the page table during each context 

switch

�Perform manual address translations

Operating System Role in 

Paging

�With respect to memory allocation and 

paging, what must the OS do when a new 

process is created?
� Look in the exe file to determine the size of the process (it can do so 

because the exe file is a structured file that indicates the size of the 

code, the global variables, the heap and the stack.)

� Figure out how many pages are needed to hold the whole process.

� See if a sufficient number of free frames are available.

� Allocate the frames to the process

� Load the pages into the frames from disk.

� Fill in the process’ page table.

� Mark the frames as used in bit vector or frame table.

Memory Protection with Paging

�The traditional base/limit register approach to 
memory protection does not work with non-
contiguous allocation.
�For memory protection with paging, the page table 
can be augmented with bits to indicate:
�Validity of page

�Read-Only / Execute

�A logical address that
references an invalid page
or accesses it in a way that
is not permitted results in
a trap to the OS.

1011

Frame

1

V

1

RO

1

X

1010 1 1 1

0001 1 1 1

0111 1 0 0

0000 0 0 0

0000 0 0 0

0000 0 0 0

1100 1 0 0

Code

Heap

Stack

0

1

2

3

4

5

6

7
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Shared Memory with Paging
�With paging, shared memory can be 

implemented by including the same frame 

in the page table of multiple processes.

Page 1

Page 2

Page 3

Process A
Logical
Memory

Page 0

Process A
Page Table

Page 2

Physical
Memory

Page 0

Page 1

Page 3

2

Frame 0

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Frame 6

Frame 7

5
1
7

0

1
2
3

Page 1

Page 2

Page 3

Process B
Logical
Memory

Page 0

Process B
Page Table

2
5
0
4

0

1
2
3

Page 2

Page 3

Segmentation

�With segmentation the logical address space is 

viewed, not as a contiguous array of bytes, but 

as a collection of segments.

�Logical addresses are specified using a segment and 

an offset within the segment.

Stack

Code

Heap

Library

Logical Address Space

0

500

200

0

0

1500

3000

0

Address Binding with 

Segmentation

�Logical addresses are translated to 

physical addresses using a segment 

table.

Stack

(0)
Code

(3)Heap
(1)

Library

(2)

Logical Address Space

0

500

200

0

0

1500

3000

0

Code

Library

Heap

Stack

1500

1699

2500

3999

7000

9999
10000

10499

Segment

Table

10000500

baselimit

1500200

25001500

70003000

0

1

2

3

Address Binding with 

Segmentation

CPU 2 12

Trap to OS

Segmentation Fault

Offset

2 150
Segment

10000500

baselimit

1500200

25001500

70003000

0

1

2

3

Code

Library

Heap

Stack

1500

1699

2500

3999

7000

9999
10000

10499

<

no

+
yes

MMU
Segment Table

Logical

Address

Physical

Address

Implementing Segmentation

�In a system that uses segmentation, there 

is close cooperation between the 

hardware, the compiler/assembler and the 

operating system.

Memory Management Problems

�Memory management, as we’ve studied it 

so far faces two significant problems:

�How to allow significantly more programs to 

execute concurrently in the same amount of 

physical memory?

�How to allow for the execution of programs 

that exceed the size of the physical memory 

(RAM)?

�Ultimate solution: virtual memory
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Approaches to the Problems

�There are several approaches that 

address either one or both of the problems 

targeted by virtual memory:

�Approaches:

�Swapping

�Overlays

�Dynamic Link Libraries

�Virtual Memory

Swapping
�Swapping allows an increase in the number of 

concurrently executing processes by copying 

inactive or blocked processes to disk (swapping 

them out).

�This achieves the first benefit of VM but not 

the second.

OS

Physical

Memory

P1

P4

P5

Disk

Secondary Memory

P4

P2

Overlays
� Overlays allow programs to exceed the size of physical 

memory by enabling the programmer to identify relatively 

independent portions of a program that can be overlaid

on top of one another in physical memory.

OS

Physical

Memory

OL1

Disk

Secondary Memory

P

1OL1

OL2

P

1

Dynamic Link Libraries

�Dynamic link libraries (DLLs) allow an 

increase in the number of concurrently 

executing programs by reducing the 

memory footprint of processes that use 

common code.

�Contrast with statically linked libraries.

Virtual Memory

�The idea behind virtual memory is to use 

physical memory to hold only the portions 

of each executing process that are 

currently being used.

�The portions of each executing process that 

are not currently being used are held on 

secondary storage until they are needed.

Virtual Memory

�Virtual memory is most often implemented 

using paging.

Page3

Page4

Page4

empty

Page1

P

2

Physical

Memory

Process 1’s

Logical

Memory

Process 0’s

Logical

Memory

Page2

Page3

Page4

Page5

Page6

Page1

Page2

Page3

Page4

Page5

Page6

Page0 Page0

Page7Page7
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Address Binding with Paged VM

�In virtual memory with paging, address 
binding is done using a page table.

�The address translation is identical to the 
paging that we discussed earlier.

�Except: 
�All pages that are not currently in physical memory 
are marked as invalid.

�Any logical address that references a page that is 
marked invalid causes the MMU to generate a trap 
to the OS.
• This type of trap is called a page fault.

Address Binding with Paged VM

Physical

Memory

Page2

Page4

Page4

empty

0

256

512

768

0

JUMP 612

Page1

P1 Logical

Memory

Page2

Page3

Page4

Page5

Page6

Page0

Page7

I

I

00V

I

11V

I

I

I

P1 Page

Table

0

1

2

3

4

5

6

7

100

Logical Address

Physical Address

Instruction

Register

010 01100100

00 01100100
256

MMU

612

Program

Counter

Page Faults
�When a logical address references a page that 

is not currently in physical memory a page fault 

occurs.

�What must the OS do to handle a page fault?
�Load the referenced page into physical memory.

�Update the page table to indicate where the new page has been 

loaded.

�Restart the instruction that generated the page fault.

�This time the instruction will succeed because the referenced page 

is in the physical memory.

� If there are no empty page frames:

• The OS must select a page to be removed from physical memory.

• Update the page table of the process whose page was removed from physical 

memory.

• It then follows the above process as if there were an empty frame (because there 

is now!)

The Page Fault Penalty

�Because page faults require disk accesses the 

effective time for a memory reference can 

increase dramatically when VM is used.

�Sample system:

�Access to physical memory requires 1ns (10-9sec)

�Reading a page from disk requires 10ms (10-2 sec)

�5% of all logical addresses result in a page fault.

�What is the effective memory access time on this system?

The Page Fault Penalty

�Being careful about the number of page 

frames available to each process (frame 

allocation policy) and the set of pages 

from each process that are held in those 

page frames (page replacement policy) 

can reduce the rate at which page faults 

occur.

Locality of Reference

�The design of frame allocation polices and page 

replacement polices is influenced by a property 

of programs called locality.

�Spatial Locality: If a program uses an 

instruction/datum, then instructions/data that are 

close by will tend to be used soon.

�Temporal Locality: If a program uses an 

instruction/datum then that instruction/datum will tend 

to be used again soon.

�90/10 Rule: Typical programs spend 90% of their time 

executing 10% of their instructions.
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Typical Program Execution

Execution Time
Image scanned from Silberschatz, Galvin & Gagne.

Locality of Reference
�How does locality of reference relate to the 

selection of page replacement and frame 

allocation policies?

�Page Replacement:

� If we use a data or instruction it is likely to be used 

again soon we shouldn’t kick out pages that have 

been used recently.

� Also, if a page hasn’t been used recently, then it is unlikely to be 

used again so so it is a good candidate to be removed.

�Frame Allocation:
� Programs execute in one locality for a while and then shift to 

another locality for a while.  So ideally we might try to ensure 

that there are enough frames allocated to a process to hold all of 

the pages that are part of the current locality.

Page Replacement Policy

�The page replacement policy dictates how 
a victim frame is selected when a page 
fault occurs and there are no empty page 
frames.

�The page in the victim frame is removed from 
memory and is replaced by the page that 
caused the fault.

�Possible Policies:
�FIFO: First-in-first-out

�LRU: Least recently used

Evaluating Page Replacement 

Policies

� The number of page faults serves as a good metric for 
evaluating page replacement policies.
� Replacement policies are often compared by using page 

reference strings and counting the number of resulting page 
faults:

�Page Reference String: A list of the pages referenced by a 
program.

• Randomly generated

• Program tracing

�Example:

1,1,2,3,3,3,4,4,1,3,3,4,2,2,5,5,1,2,2,3,4,4,4,5,5

• Page reference strings can be compressed by removing duplicates. Why?

1,2,3,4,1,3,4,2,5,1,2,3,4,5

Simulating FIFO

�Assuming a frame allocation of 3 frames 

and the following page reference string, 

how many page faults occur with FIFO?

1 1

2

1

2

3

4

2

3

4

1

3

4

1

2

4

1

3

4

1

3

5

1

2

5

1

2

5

1

2

5

3

2

5

3

4

5

3

4

1 2 3 4 1 3 4 2 5 1 2 3 4 5

Optimal Page Replacement 

(OPT)

�Optimal Page Replacement:

�Replace the page that will not be used for the 

longest period of time.

�Guarantees the fewest number of page faults.

�Problem?

�Solution?
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Least Recently Used (LRU)

�The LRU replacement policy, replaces the 

page that has not been used in the longest 

period of time.

�Attempts to approximate OPT.

�Implementation issues:

�Requires hardware support to keep track of the 

time a page was last referenced.

• Counter based approach.

�Requires a search for the frame containing the 

page with the earliest reference time.

Approximating LRU

�Most virtual memory hardware provides 

two features that are helpful for 

approximating LRU page replacement.

�Associated with each page frame are two bits:

�Reference Bit: this bit is set to 0 when a page is 

loaded into the frame and is flipped to 1 when the 

page is referenced.

�Dirty Bit: this bit is set to 0 when a page is loaded 

into the frame and is flipped to 1 when the page is 

modified.

Shifting Implementation of LRU

�Strategy:
�Keep a table with a k bit number for each page frame.

�Periodically, shift the referenced bits for each page 
frame into the MSb of its associated k bit number and 
reset the referenced bits to 0.

�Select the page in the page frame with the smallest k
bit number as the victim.

00000

00000

00000

00000

0

1

2

f

…

0

1

1

0

Ref. 

Bits
Table

00000

10000

10000

00000

0

1

2

f

…

0

0

0

0

Ref. 

Bits
Table

0

1

2

f

1

1

0

1

Ref. 

Bits
10000

11000

01000

10000

0

1

2

f

…

0

0

0

0

Ref. 

Bits
Table

00000

10000

10000

00000

…

Table

Second Chance LRU
Page 

Frames

0

Ref. 

Bits

1

1

0

1

Victim

�Strategy:

�View the page frames as a 
circular queue.

�Keep a pointer to frame 
containing the most 
recently replaced page.

�Traverse the reference 
bits:
�Zero each bit as it is visited.

�Replace first unreferenced 
page.

Next 

Victim

Enhanced Second Chance LRU

�Similar to second chance but considers both the 
referenced bit (r) and the dirty bit (d):
�Page frames are divided into categories based on the 
bit pair rd: 
�00: neither recently used nor modified.

• Best choice for replacement.

�01: not recently used but modified.

�10: recently used but not modified.

�11: recently used and modified.

• Worst choice for replacement.

�Replace the page in the next frame in the lowest 
existing category.

Page Buffering

�Performance of a paging system can be 
improved by keeping a pool of unused page 
frames.
�On a page fault load the requested page into one of 
the unused page frames.

�Then select a victim page:
�Write its contents back to disk (if necessary).

� Add its frame to the pool of unused frames.

�An enhancement:
�Keep a record of what pages are in the pool of unused 
frames.
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Page Frame Allocation Policy

�The page frame allocation policy 
determines the number of page frames 
that each process is allowed to use.

�Allocation Policies:
�Fixed Allocations:

• Equal

• Proportional

�Dynamic Allocations:
• Working set

• Page fault frequency

Working Set Frame Allocation

�The working set policy attempts to allocate 

frames based on the size of a process’ 

current locality.

�Example:

…2 6 1 5 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 3 4 4 4 1 3 2 3…

Page Reference String

w w

t1 t2

WS(t1)={2,6,1,5,7}

|WS(t1)| = 5

WS(t2)={3,4}

|WS(t2)| = 2

w ≡ working set window size

Page Fault Frequency 

Allocation
�The page fault frequency policy also attempts to 
allocate frames based on the size of a process’ 
current locality.
�However, it does not attempt to measure the locality 
size directly. 

� Instead it relies on the frequency of page faults to 
indicate if the allocation is either too large or not large 
enough for the locality.

p
a
g
e
-f
a
u
lt
 r
a
te

Frames 

Allocated

Upper bound

Lower bound

Allocate more frames

Allocate less frames

Thrashing

�If a process is not allocated a sufficient 

number of frames to hold its current 

locality it will thrash.

�A process that is thrashing, spends more time 

waiting for page-faults than it spends 

processing.

�How might an OS deal with thrashing?

Problems With Page Tables

�What issues might exist with the use of a 

page table for run-time address binding on 

a modern system?

Multilevel Page Table

00001 0101 00110101

Logical Address

First Level

Page Table

I

V

I

0

1

2

V31

……

Second Level

Page Table

1001V

0010V

0

5

I15

……

……

Second Level

Page Table

1011V

I

0

5

1111V15

……

……

0010 00110101

Physical Address

� A multilevel page table breaks the page table up into 

pages.

� The first level page table and the second level page tables that 

are currently being used are held in memory.
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Inverted Page Table

00110101

0010 00110101

Physical Address

Inverted Page Table

page pid frame

00010101 P1 0010

00010111 P5 0000

10011010 P1 0011

11111111 P1 1111

… … …

Parallel

Search

00010101 P2 0001

00010101

Logical Address 

generated by Process 1

V

V

V

I

V

� An inverted page table keeps track of which page from which 

process is stored in each page frame.

� Parallel search hardware is then used to search the inverted page table 

for the frame containing the referenced page of the current process.

Multi-level 

Page Table

Translation Look-Aside Buffer 

(TLB)

00010101 00110101

Logical Address 

generated by Process 1

0010 00110101

Physical Address

Translation Look-Aside Buffer

page pid frame

00010101 P1 0010

00010101 P5 0000

00010111 P1 0011

00010101 P2 0001

Parallel

Search

Update TLB

if it does not

contain the

translation.

Cancel lookup if 

translation is found 

in TLB

V

V

I

V


