
1

Process Management

Dickinson College

Computer Science 354

Spring 2006

slides courtesy of Professor Grant Braught

Road Map

�Past:
�What an OS is, why we have them, what they do.

�Base hardware and support for operating systems

�Present:
�Process Management

�Future:
�Process Scheduling

�Concurrent programming

�Memory management

�Storage management

�Protection and Security

Process Management

�Outline

�What is process management?

�Creating and managing processes:

�From user perspective

�From program perspective

• Project #1

• C++ code examples

�From OS perspective

�Inter-process Communication

Process Management

�The process manager must provide for:

�Process creation

�Process termination

�Process synchronization

�Inter-process communication

�Process scheduling

Process

�A process is a program in execution.

A Process in Memory

�A process’ logical address
space consists of four
segments.
�Text segment: the
executable program code
(read-only).
�a.k.a. Code segment

�Data segment: global
variables.

�Heap segment: dynamically
allocated memory (e.g. new)

�Stack segment: actual
parameters and local
variables.

Text Segment

Data Segment

Heap Segment

Stack Segment

0

MA

X

Logical Address

Space

2

Creating Processes from the

User’s Perspective

Where do processes come

from?
�The OS initialization routine starts some
processes that perform system services
(e.g. servers and daemons).

�Other processes are created by the user:

�Double clicking an icon in a GUI

�Entering a command in a shell

�Voice commands

�From the OS perspective, all processes are
created in the same way.

Shells and User Created

Processes
�Unix Shells (e.g. sh, bash, tsh, csh)

�New processes are created when programs are
executed by entering the name of their executable file
on the command line.
�Full paths:

• /usr/XllR6/bin/xeyes

�Relative paths:

• bin/xeyes

• Works if current directory is /usr/X11R6

• ./xeyes

• Works if current directory is /usr/XllR6/bin

• . indicates the current directory

• ../bin/xeyes

• Works if current directory is a sub directory of /usr/X11R6

• .. indicates the parent directory

Environment Variables

�Shells typically read a number of files on
startup that define environment variables
that make it easier to perform common
operations:

�The PATH variable
�Defines a sequence of directories in which to look
for programs that are being executed.
• e.g. PATH=/bin:/usr/bin

�The HOME variable
�Defines the user’s home directory.

• Using cd without any argument returns to the HOME
directory.

Useful Unix Commands

�Some Unix commands:
�cd <dir>

�pwd

� ls [-al] [<dir>]

�which <file>

�man <topic>

� rm <file>

� rmdir <directory>

�&

Shell built-ins vs. Programs

�Some Unix commands are built into the

shell and others are external programs.

�cd and pwd are built into the shell

�ls, rm, which and lots of others are programs

3

Seeing Processes in Unix

�The ps command displays the processes

currently executing on a Unix machine.

�ps

�ps -ax

�ps -O pid,ppid,command

�pid = process identifier

�ppid = parent process identifier

�Use man ps to find out about all the options.

Process Trees

�In general processes form a tree:

�Parents, children, siblings, grand children,

grand parents etc…

�In Unix, the init process (pid=1) is at the root of the

tree.

A

DB C

FE

Terminating Processes

�The kill command can be used to

terminate processes in Unix.

�kill -s KILL <pid>

Random OS Quote

�I'm not one of those who think Bill Gates is

the devil. I simply suspect that if Microsoft

ever met up with the devil, it wouldn't need

an interpreter.

Nicholas Petreley

Creating Processes from a

Program’s Perspective

Process Creation in Unix

�Programs use four system calls when

creating and managing new processes in

Unix.

�fork

�wait

�exit

�exec

4

The fork System Call

�The fork system call:

�Constructs a new logical address space and
context for the child that are identical to that of
the parent.
�Data, stack and heap segments are cloned.

�Code segment may be cloned or shared with the
parent.

�Register contents are identical.

�PC value is identical.

�Returns different values in the parent and the
child
�Child gets return value of 0.

�Parent gets child’s pid as the return value.

fork Example

#include <iostream> // needed for cout

#include <unistd.h> // needed for fork

#include <sys/wait.h> // needed for wait

using namespace std;

int main() {

cout << "Parent running" << endl;

int pid = fork();

if (pid != 0) {

cout << "Parent running after fork" << endl;

wait(NULL);

cout << "Parent done" << endl;

}

else {

cout << "Child running" << endl;

sleep(5);

cout << "Child done" << endl;

}

}

wait and exit

�wait(NULL)
�Causes a process to wait until any one of its child
processes has completed.
�The waitpid system call can be used to wait for a specific
child process to complete.

�exit(int)
�Causes the program to exit with the main method
returning the specified value.
�e.g. exit(-1);

�Reaching the end of the main method results in an implicit
exit(0).

fork Puzzle

�What is the output of this program?
int main() {

int x = 27;

int pid = fork();

if (pid != 0) {

cout << "Parent's x before wait is " << x << endl;

x = x + 5;

wait(NULL);

cout << "Parent's x after wait is " << x << endl;

}

else {

cout << "Child's x before sleep is " << x << endl;

sleep(5);

x = x + 10;

cout << "Child's x after sleep is " << x << endl;

}

}

Another fork Puzzle

�What will the output of this program look

like?
int main() {

int pid = fork();

if (pid != 0) {

for (int i=0; i<10000; i++) {

cout << "Parent process running." << endl;

}

wait(NULL);

}

else {

for (int i=0; i<10000; i++) {

cout << "Child process running." << endl;

}

}

}

The exec System Call

�The exec system call transforms the calling
process into a new process.
�Code and data segments are determined by
specifying a new executable file.

�Stack and heap segments are initially empty.

�PC is set to the start of the new program.

�PID & PPID are inherited from calling process.

�Typically, a process will use fork to create a child
process and then the child will use an exec call to
load and execute a new program.

5

C/C++ Library Interface

�C/C++ provides a variety of library
functions that wrap exec system calls:

�execl, execlp, execle,
exect, execv, execvp

�We will be using the execv function:
�int execv(<prog>, <args>)

• <prog>: A C-style string indicating the executable file for
the new process.

• <args>: An array of C-style strings providing the
command line arguments to the new process.

execv Example
int main() {

cout << "Parent running" << endl;

int pid = fork();

if (pid != 0) {

wait(NULL);

cout << "Parent done" << endl;

}

else {

cout << "Child running" << endl;

char *prog = ”/bin/ls”; // full or relative path

char *args[3];

args[0]="ls"; // args[0] is name of program

args[1]="-l"; // command line arguments…

args[2]=NULL; // args must end with NULL

int rv = execv(prog, args);

cout << "Problem with execv" << endl;

}

}

What Other Systems Do

�Windows libraries provide the functions:

�CreateProcess

�TerminateProcess

�WaitForSingleObject

�The Java class libraries provide the

methods:

�Runtime.exec

�Process.waitFor

�System.exit

Random OS Quote

�Operating systems are like underwear —

nobody really wants to look at them.

Bill Joy

Project #1 and

C/C++ Program Examples

Project #1

�Part #1:

�Write some C/C++ programs for practice with

using fork, wait and execv.

�Part #2:

�Write a shell program in C/C++.

�Read and execute commands entered by the user.

�Assignment is on-line.

6

string in C++
#import <iostream>

#import <string>

using namespace std;

int main() {

string s1 = "Test String";

string s2 = "Another thing";

int len1 = s1.length();

cout << len1 << endl; // 11

string s3 = s1 + " " + s2;

cout << s3 << endl; // "Test String Another Thing"

string s4 = s1.substr(0,4); // "Test"

cout << s4 << endl;

string s5 = s2.substr(4,3); // "her"

cout << s5 << endl;

string s6 = s2.substr(8); // "thing"

cout << s6 << endl;

…

}

string in C++
int main() {

string s1 = "Test String";

string s2 = "Another thing";

…

int loc1 = s1.find('t');

cout << loc1 << endl; // 3

int loc2 = s2.find("th");

cout << loc2 << endl; // 3

int loc3 = s2.find("zz");

cout << loc3 << endl; // -1 == string::npos

int loc4 = s1.rfind('t');

cout << loc4 << endl; // 6

int loc5 = s2.rfind("th");

cout << loc5 << endl; // 8

int loc6 = s2.rfind("zz");

cout << loc6 << endl; // -1 == string::npos

}

Strings in C

�In C, a string is a pointer to an array of
characters.

�The last character in the array must always be
NULL (‘/0’) to indicate the end of the string.

char *prog = ”/bin/ls”;

char *args[3];

args[0]="ls";

args[1]="-l";

args[2]=NULL;

/ b i n / l s /0

prog:

args:
l s /0

- l /0

/0

Converting a C++ string

to a C-style string

�C++ strings are easy to work with, but

sometimes a function will require C-style

strings as arguments (e.g. execv).

�The c_str function in the string class creates a

new C-style string and returns the pointer to it.

string cppStr = "Test String";

char *cStr;

cStr = (char *)cppStr.c_str();

SimpleShell.cpp

�The SimpleShell.cpp program:
�Reads one line of input from the user

�Attempts to create a new process and execute the
program indicated by the input.
�Waits for the child process to complete.

�Exits

�Project asks you to extend the SimpleShell:
�Read commands until exit command is entered.

�Allow working directory to be changed.

� Implement PATH and HOME functionality.

�Add & functionality.

Creating Processes from the

Operating System’s Perspective

7

Process States in the OS

�From the OS perspective a process moves

among five different logical states during

its lifetime.

new

ready running

waiting

terminatedadmitted

I/O completion

or event occurence

I/O request

or event wait

scheduled

Interrupt or

voluntary yield

Exit

Process Manager Data

Structures

�To keep track of processes the process

manager relies on several data structures:

�The Process Control Block (PCB)

�The Ready Queue

�Device Queues

Process Control Block

�The PCB is a structure
used by the OS to hold all
of the information it needs
to know about a process:
�PID, PPID

�Process state (e.g. ready)

�Address space info
�Base/Limit or VM info

�Open files

�Accounting Information:
�CPU/Real time used

�Time/Resource limits

�Context when suspended
�PC, GP Register values

PID

PPID

state

PC

GP

Register

Contents

Address

Space

Information

Open File

Information

Accounting

Information

…Bunch-o-Stuff…

PCB

Tail:
Head:

Tail:
Head:

Tail:
Head:

Ready and Device Queues
� The OS stores each PCB in the ready queue, a device
queue or one of several other types of queues, reflecting
the currrent state of the process.

PID:3
bunch-o-stuff

context

Next:
Ready

Queue

Disk 0

Console

PID:28
bunch-o-stuff

context

Next:
PID:15

bunch-o-stuff

context

Next: \0

CDROM

PID:7
bunch-o-stuff

context

Next: \0

PID:44
bunch-o-stuff

context

Next:
PID:5

bunch-o-stuff

context

Next: \0

Tail: \0
Head: \0

Queue Example

Process #7
int main() {

…

string cmd;

getln(cin,cmd);

cout << cmd

…

}

Tail:
Head:

Tail:
Head:

PID:3
bunch-o-stuff

context

Next: \0
Ready

Queue

Console

PID:7
bunch-o-stuff

context

Next:

�Process #7 is running

�Executes getln instruction

�Call to C++ library

• C++ Library makes a system call to

read from console.

• Routine in OS kernel is

invoked.

Queue Example

Process #7
int main() {

…

string cmd;

getln(cin,cmd);

cout << cmd;

…

}

Tail:
Head:

Tail:
Head:

PID:3
bunch-o-stuff

context

Next: \0
Ready

Queue

Console

PID:7
bunch-o-stuff

context

Next: \0

�The OS handles system

call

�Process #7 is blocked on the

Console device queue.

�OS selects new process to

run from the ready queue.

8

Queue Example

Process #7
int main() {

…

string cmd;

getln(cin,cmd);

cout << cmd;

…

}

Tail:
Head:

Tail: \0
Head: \0

PID:3
bunch-o-stuff

context

Next:
Ready

Queue

Console

PID:7
bunch-o-stuff

context

Next: \0

� User enters text on console

� Console generates an interrupt

� Interrupt handler in OS is invoked.

�OS makes data available to process #7

�Moves process #7 back to ready queue

�Process #7 resumes within C++ libraray

• Library code copies data into cmd.

• Returns control to main

Random OS Quote

�"There are people who don't like

capitalism, and people who don't like PCs.

But there's no-one who likes the PC who

doesn't like Microsoft”

Bill Gates

Interprocess Communication

Mechanisms

IPC Mechanisms

�There are two main ways that operating

systems use to implement interprocess

communication (IPC).

�Message Passing IPC

�Shared Memory IPC

IPC via Shared Memory

�With shared memory:

�Process B uses a system

call to agree to share part

of its address space.

�Process A uses a system

call to attach B’s shared

memory to its own address

space.

�Shared memory is then

accessed like any other

portion of the process’

address space.

OS Kernel

Shared X=4

Memory

Shared X=4

Process B

Process

A

IPC via Message Passing

� In message passing:
�Process A creates a
messsage M.

�Process A uses a send
system call to send the
message to process B.
�The message is copied
into memory in the
kernel’s address space.

�Process B uses a
receive system call to
retrieve the message
from A.
�The message is copied
into B’s address space.

Process A

Process B

OS Kernel

M

M

M

R
e
c
e
iv
e

Memory

9

Road Map

�Past:
�What an OS is, why we have them, what they do.

�Base hardware and support for operating systems

�Process Management

�Present:
�Process Scheduling

�Future:
�Concurrent programming

�Memory management

�Storage management

�Protection and Security

