
1

Process Scheduling

Dickinson College

Computer Science 354

Spring 2006

slides courtesy of Professor Grant Braught

Road Map

� Past:
� What an OS is, why we have them, what they do.

� Base hardware and support for operating systems

� Process Management

� Present:
� Process Scheduling

� Future:
� Concurrent programming

� Memory management

� Storage management

� Protection and Security

Process Scheduling

�Outline

�Types of scheduling

�Context switching

�Performance metrics

�CPU Scheduling algorithms

�Real OS Examples

�Project #2

Types of Scheduling

�There are three types of scheduling that

occur on different time scales:

�CPU scheduling

�a.k.a. short-term scheduling or just scheduling

�Job scheduling

�a.k.a. Long-term scheduling

�Medium-term scheduling

�Not every OS uses all three types.

CPU Scheduling

�The short-term (CPU scheduler or

scheduler) selects, from the ready queue,

the next process that will run on the CPU.

�The CPU scheduler may run 10-100 times per

second.

CPU Scheduler

New

processes

Ready

Queue CPU

Waiting

enqueuer dispatcher
Exit

I/O request

or wait

Interrupt

or yield

Job Scheduling
�A job scheduler selects jobs (i.e.

processes) from a pool of new, but as yet

unexecuted, processes to add to the ready

queue.

�Job scheduling may only occur every several

minutes.

CPU Scheduler

New

Jobs

CPU

Waiting

Exit

Job

Scheduler

Job Pool

2

Job Scheduling Criterion

�The job scheduler determines the degree

of multiprogramming in the system.

�The job scheduler attempts to maintain a

balance of CPU Bound processes and I/O

Bound processes in the system.

Medium-term Scheduling

�The medium-term scheduler swaps

partially executed processes in and out to

dynamically adjust the degree of

multiprogramming or to alter the process

mix.

CPU Scheduler CPU

Waiting

Exit

Job

Scheduler

Job Pool

New

Jobs

Swapped Out

Random OS Cartoon Context Switching

�Any time the CPU is switched from

running one process to running another

process, a context switch must occur.

�A context switch is a two part process:

�The context of the running process must be saved.

�The context of the next process to run must be

restored.

Saving a Process’ Context

�A running process’ context is saved immediately

following any interrupt or system call.

�Saving the context requires backing up any values

that may/will be overwritten by another process.

�Values are backed up by copying them to the

process’ PCB.

�Some of the values that are copied include:

• The value of the PC just before the interrupt or system call

• The current values in the SP and GP registers.

• Address space information (base/limit registers)

Restoring a Process’ Context

�Restoring a context:

�A process’ context is restored just before

control of the CPU is given to that process.

�The values of the SP and GP registers are copied

from the PCB back into the registers.

�The machine is switched to user mode.

�The PC is set to the value from the PCB.

3

Speeding up Context Switches

�Context switching takes time.

�Some techniques that have been used to
speedup context switching include:

�Partial context switches

�Kernel register set

�Multiple register sets

�Machine language instruction

�Threads

CPU Scheduling

�In designing the CPU scheduler there are

two major design questions that must be

answered:

�Under what circumstances will the scheduler

be invoked?

�Non-preemptive vs. Preemptive scheduling

�When the scheduler is invoked, what criterion

will it use to select, from the ready queue, the

next process to run?

�Scheduling Algorithms

When Should the Scheduler

Run?

�There are four circumstances under which

the scheduler can be used to select a new

process to run:
1. The running process blocks.

(running→waiting)

2. A new process is created. (new → ready)

3. The running process is interrupted. (running →

ready)

A process may also unblock. (waiting → ready)

4. A process exits. (running→terminated)

Non-Preemptive Scheduling

�With non-preemptive scheduling a process that

is in the running state will remain in the running

state until it:

�Terminates

�Makes a blocking system call

�So, in a non-preemptive scheduler, scheduling occurs

under circumstances #1 and #4.

�Note: Some systems allow a process to voluntarily yield the

CPU. This action would also require the scheduler to choose

a new process to run.

Preemptive Scheduling

�With preemptive scheduling, the scheduler

will run under all of the circumstances (#1-

#4).

�Preemptive scheduling enables a number of

things that non-preemptive scheduling cannot:

�Time sharing

�Priority scheduling

Real World Scheduling

Analogies

�Which type of scheduling (preemptive /

non-preemptive) occurs in the following

settings?

�Restaurant

�Hospital emergency room

�Professor’s office hours

4

Random OS Quote

�The two main design principles of the

NeXT machine appear to be revenge and

spite.

Don Lancaster

Scheduling Metrics

�There are a number of metrics that are
commonly used to evaluate the
performance of a scheduling algorithm:

�CPU Utilization

�Throughput

�Turnaround Time

�Wait Time

�Waiting Time

�Response Time

CPU Utilization

�CPU Utilization is the percentage of time

that the CPU spends executing code on

behalf of the users.

�Running user code

�Processing system calls

�Handling interrupts that signal completion of a

requested operation.

Throughput / Turnaround Time

�Throughput is the average number of

processes completed per time unit.

�E.g. 10 jobs / minute

�Turnaround time is the total time from

when a process first enters the ready state

to the last time it leaves the running state.

�Typically averaged across a number of jobs.

Wait Time / Waiting Time

�Wait time is the time a process spends in
the ready queue before its first transition to
the running state.

�Waiting time is the total time that a
process spends in the ready queue during
its entire execution.

�Both of these are typically reported as an
average across a number of jobs.

Response Time

�Response time is the average length of a

visit to the ready queue.

5

CPU Scheduling

Algorithms

Scheduling Algorithms

�Basic Strategies:

�First-Come-First-Served (FCFS)

�Shortest Job Next (SJN)

�Priority

�Round Robin (RR)

�Combined Strategies:

�Multi-level Queues

�Multi-level Feedback Queues

Comparing Scheduling

Algorithms

�There are a variety of techniques for

evaluating and comparing the

performance of different scheduling

algorithms:

�Deterministic Modeling

�Simulation

�Implementation

�Theoretical approaches (e.g. Queuing

models)

Modeling Processes

�In order to use deterministic modeling or

simulation it is necessary to model of how

processes behave.

�Typically processes alternate between bursts

of CPU operations and blocking I/O requests.

Process 1:

CPU 10

I/O Disk1 200

CPU 20

I/O Disk1 150

CPU 10

Process 2:

CPU 100

I/O Disk1 100

CPU 100

Deterministic Modeling

�For deterministic modeling we will make

the simplifying assumption that every

process consists of only a single burst of

CPU activity.

�This allows the operation of the scheduler to

be modeled more easily by hand.
Arrival CPU

Order Burst

0 350

1 125

2 475

3 250

4 75

FCFS Example
Arrival CPU

Order Burst

0 350

1 125

2 475

3 250

4 75

p0 p1 p2 p3 p4

127512009504753500

Gantt Chart:

Throughput =
5 jobs

1275 tu
= 0.004

jobs

tu

Turnaround =
(350 + 475 + 950 +1200 +1275) tu

5 jobs
= 850 tu

job

Wait =
(0 + 350 + 475 + 900 +1200) tu

5 jobs
= 595 tu

job

6

SJN Example

�SJN guarantees minimum average wait time.

Arrival CPU

Order Burst

0 350

1 125

2 475

3 250

4 75

p0p1 p2p3p4

1275800450200750

Gantt Chart:

Wait =
(0 + 75+ 200 + 450+ 800) tu

5 jobs
= 305 tu

job

Turnaround =
(75+ 200+ 450+ 800 +1275) tu

5 jobs
= 560 tu

job

Shortest Next CPU Burst Next

�The duration of past CPU bursts can be used as
a predictor of the duration of the next CPU burst.
�One approach uses an exponential average:

� tn = actual length of n
th (previous) CPU burst.

� τn = predicted length of n
th CPU burst.

� τn+1 = predicted length of next CPU burst.

� α = history scaling factor

τ n+1 =α ⋅ tn + (1−α)τ n

Shortest Next CPU Burst Next

CPU burst

1 2 3 4 5 6 7 8 9

Priority Scheduling

�With priority scheduling every process is

assigned a priority value.

�At each scheduling opportunity, the process

with the highest priority is selected to run.

�Priority scheduling can result in starvation.

�Dynamic priorities and aging can be used to

combat starvation.

RR Scheduling (w/ 50tu Time Slice)

Arrival CPU

Order Burst

0 350

1 125

2 475

3 250

4 75

p0

4754003002001000

p4 p1p0p4p3p2p1 p1 p2 p3 p0 p3p2

p0 p3p2 p0 p3p2 p0 p2 p0 p2 p2 p2 p2

550 650

650 750 850 950 1050 1150 1250 1275

Gantt Chart:

Wait =
(0+ 50+100 +150 + 200) tu

5 jobs
=100 tu

job

Response =
Waitingp 0 + ...+Waitingp4

total visits to ready queue

Waitingp0 = (0 + 200 +175 +125 +100 +100 + 50) tu = 750 tu

RR Scheduling

(w/ 10 tu scheduling overhead)

p0

5404803602401200

p4 p1p0p4p3p2p1 p1 p2 p3 p0 p3p2

p0 p3p2 p0 p3p2 p0 p2 p0 p2 p2 p2 p2

575 790

910 1030 1150 1270 1390 1510 1535

635 670

790

Gantt Chart:

CPU =
(350+125 + 475 + 250+ 75) tu

1535 tu
×100 =

1275

1535
×100 = 83%

� Throughput, turnaround, wait, waiting and response time

calculations must now also include the overhead.

7

Multi-level Queues
�The ready queue is divided into multiple levels.

�The queue for each level has a different priority.
�Any job in higher priority queue will run before any job in
lower priority queue.

�Each queue may use its own internal scheduling
algorithm.

�Processes are assigned to a specific queue.

CPU Scheduler

New

processes

System

CPU

Waiting

enqueuer dispatcher
Exit

I/O request

or wait

Interrupt

or yield
Interactive

Batch

Student

Multi-level Feedback Queues
�Similar to multi-level queues:

�Each new process is assigned a priority.

�The OS adjusts the priority of each process as it runs.
�Thus, processes move among the different queues as they
run.

CPU Scheduler

New

processes

Priority 90-100

CPU

Waiting

enqueuer dispatcher
Exit

I/O request

or wait

Interrupt

or yield
Priority 75-89

Priority 50-74

Priority 0-49

Random OS Quote

�"The Internet? We are not interested in it”

Bill Gates, 1993

�"Sometimes we do get taken by surprise.

For example, when the Internet came

along, we had it as a fifth or sixth priority.”

Bill Gates, 1998

Examples of Real OS

CPU Scheduling

Algorithms

Linux Scheduling (pre. V2.5)

�Early Linux kernels used preemptive scheduling

with a multi-level queue with three levels:

�FIFO: Highest priority level. Used for short, time-

critical system threads.

�RR: Medium priority. Used for longer running system

threads.

�OTHER: Lowest priority. Used for all user threads.

�Internally, the OTHER queue uses a dynamic priority

scheduling scheme.

Linux OTHER Queue

Scheduling
�Each thread, i, has a number of credits, pi

�New threads are given a default number of credits, K.

�The system timer is used to create fixed size
time slices.
�On each timer interrupt the credits of the running
thread is decremented

� If a thread’s credits reach 0, it is blocked.

�Scheduling is preemptive:
� In each time slice, the thread in the ready queue that
has the most credits is selected to run.
�If no threads are ready (i.e. all threads are blocked), then a
recrediting operation is performed.

8

Linux OTHER Recrediting

�If there are no threads ready to run

recrediting occurs:
�During recrediting, every thread in the system is

assigned credits using the following formula:

�Threads that were blocked because they had 0

credits now

return to the ready queue with K credits.

pi =
pi

2
+K

Solaris

�Solaris uses preemptive scheduling with a

multi-level queue with four levels.

�The levels in order of decreasing priority are:

�Real time: Provides guaranteed bound on

response time.

�System: Kernel threads

�Interactive: User threads that are running in a

windowing environment.

�Time Sharing: Non-interactive user threads.

Solaris Interactive and

Time Sharing Scheduling

�Priority within the interactive and time

sharing queues is based on a dispatch

table. Priority
Time

Slice

Time Slice

Expired

Return from

Blocked

0 200 0 50
5 200 0 50
10 160 0 51
15 160 5 51
20 120 10 52
25 120 15 52
30 80 20 53
35 80 25 54
40 40 30 55
45 40 35 56
50 40 40 58
55 40 45 58
59 20 49 59

Windows XP Scheduling
�Windows XP uses preemptive scheduling with a

multi-level queue with six levels.

�Within each level, priority scheduling with seven

relative priorities is used.

�Priorities over 15 are fixed. Priorities less than 15 are

dynamic and are adjusted based on process behavior.

User Processes

Base

Priority

Fixed Priority

Real

Time
High

Above

Normal
Normal

Below

Normal
Idle

Time Critical

Highest

Above Normal

Normal

Below Normal

Lowest

Idle

31

26

25

24

23

22

16

15

15

14

13

12

11

1

15

12

11

10

9

8

1

15

10

9

8

7

5

1

15

8

7

6

5

4

1

15

6

5

4

3

2

1

Windows XP Scheduling

�Windows XP scheduling does two unique things:

�Priority Adjustments:

�Like other schedulers:

• Relative priority of thread using up its time slice is decreased.

• Relative priority of thread returning from blocked is increased.

• However, in XP the amount of the increase depends on why

the thread was blocked.

�Within the Normal priority class, threads in the

foreground process get a longer time slice (3x) than

other threads.

Random OS Quote

�Here’s a few of 11 rules that Bill Gates

gave to high school kids regarding stuff

they won’t learn in school.

�Rule 1: Life is not fair...get used to it.

�Rule 4: If you think your teacher is tough, wait

till you get a boss. He doesn't have tenure.

�Rule 11: Be nice to nerds. Chances are you'll

end up working for one.

9

Project #2

CPU Scheduling Simulation

Scheduling Simulations

�Scheduling simulations account for several

important factors that are frequently

ignored by deterministic modeling:

�Scheduling overhead

�I/O Operations

�Process Profiles

�CPU Bound vs. I/O Bound

Project #2

�In project #2 you will extend a provided

scheduling simulator by implementing and

testing a round robin scheduler.

Using the Simulator

�Source code for the simulator is provided

on the project web-page.

�To run the simulator:
� javac *.java

� java SystemDriver <procFile> <devFile> <sched>

�<procFile>: File holding a list of files describing the processes to be

scheduled.

�<defFile>: File holding a list of the available I/O devices.

�<sched>: The name of the scheduling algorithm to use.

Provided Example

�The simulator comes with an example that

can be run with the following command

line:

java SystemDriver processes.dat devices.dat FCFSnoIO

�Sample Results:

System Time: 64

Kernel Time: 12

User Time: 45

Idle Time: 7

CPU Utilization: 70.31%

Configuration Files

�processes.dat

List of all of the I/O

devices that the system

supports. You may add or

delete devices at will.

However, processes may

only use the devices

specified in this file.

List of I/O Devices.

I/O DISK1

I/O DISK2

I/O CDROM

�devices.dat

These three processes have

a variety of arrival times

and CPU burst length.

The processes do not

perform any I/O.

process1.dat

process2.dat

process3.dat

10

Process Description Files
Process name: must be unique among all

processes for any given simulation.

PROCESS5

Process arrival time:

15

Process profile. This must begin with

START and end with EXIT. Also every process

must start and end with a CPU burst. That is,

the first line after START and the last line

before EXIT must be CPU bursts. In between

the lines may be: # CPU <time>

IO <device> <time>

START

CPU 25

IO DISK1 100

CPU 15

IO CDROM 50

CPU 25

EXIT

Provided Sample Processes

� process1.dat: � process2.dat: � process3.dat:

PROCESS1

0

START

CPU 20

EXIT

PROCESS2

50

START

CPU 10

EXIT

PROCESS3

10

START

CPU 15

EXIT

Sample Scheduler (FCFSnoIO)

�The FCFSnoIO scheduler provided with

the simulator schedules processes using

FCFC.

�The processes may not perform any I/O

because this scheduler does not provide the

ability to block processes that are waiting on

I/O.

�Schedule by Deterministic Modeling:Process0 Process3 Idle Process2

0 20 35 50

Understanding the Sample

Results

�Results:

�Overhead for each system call is 2 time units.

�One system call per process at arrival time.

�One system call per process at exit time.

�Interrupt handling also adds 2 time units of

overhead.

System Time: 64

Kernel Time: 12

User Time: 45

Idle Time: 7

CPU Utilization: 70.31%

Code Tour of FCFSnoIO

� Important points:
�Kernel interface

�No-arg constructor

�systemCall method

• callID

• START_PROCESS

• TERMINATE_PROCESS

• IO_REQUEST

• MAKE_DEVICE

• SystemTimer object

�interrupt method

• deviceID

�running method

�terminate method

What Needs to be Done?

�You need to:

�Add handling of devices and I/O requests.

�Implement round robin scheduling with time

slicing.

�Compute relevant statistics:

�Throughput, turnaround time, wait time, waiting

time, response time.

