
1

Thread Synchronization

Dickinson College

Computer Science 354

Spring 2006

slides courtesy of Professor Grant Braught

Road Map

� Past:
� What an OS is, why we have them, what they do.

� Base hardware and support for operating systems

� Process Management

� Process Scheduling

� Multi-Threading

� Present:
� Thread Synchronization

� Future:
� Memory management

� Storage management

� Protection and Security

Thread Synchronization

�A motivating example
�Explanation of example

�Terminology

�Synchronization from user’s perspective
�The semaphore mechanism

�Synchronization patterns

�Synchronization problems

�Synchronization from the OS’s perspective
�Within the kernel

�Providing synchronization primitives

�Java synchronization

Motivating Example

�What does the ThreadSynch program do?

�What output should be produced by the

ThreadSynch program?

�What output is produced by the

ThreadSynch program?

Inside ThreadSynchExample

�The machine code produced for the

IncThread and DecThread would contain

some code similar to the following.

i1: LOAD R0 X

i2: ADD R0 R0 #1

i3: STORE R0 X

�IncThread:
d1: LOAD R1 X

d2: SUB R1 R1 #1

d3: STORE R1 X

�DecThread:

ThreadSynchExample Execution

�Consider the following execution

sequence for incThread and decThread:

�Assume X is initially 0

i1: LOAD R0 X

i2: ADD R0 R0 #1

i3: STORE R0 X

�incThread:

d1: LOAD R1 X

d2: SUB R1 R1 #1

d3: STORE R1 X

�decThread:

timer

interrupt

timer

interrupt

2

Random OS Humor

�Windows Haiku Error Messages

�Three things are certain:

Death, taxes and lost data.

Guess which has occurred.

�Having been crashed

The document you're seeking

Must now be retyped.

Terminology

�Thread synchronization

�Mutual Exclusion

�Critical sections

�Serialization

�Race condition

�Non-determinism

Thread Synchronization

�Recall that threads within a process

execute concurrently.

�Thread synchronization is the process of

imposing synchronization constraints on

otherwise concurrently executing threads

causing them to run:
�One at a time (mutual exclusion)

�In some predetermined order (serialization).

Mutual Exclusion

�A mutual exclusion constraint requires that

two or more events be prevented from

occurring concurrently.

�Note that mutual exclusion does not impose a

specific order on the events.

�They may occur in any order, so long as they are

forced to occur sequentially.

Mutual Exclusion Example

�Recall the ThreadSynchExample program:

�A mutual exclusion constraint is necessary to
ensure proper execution.

i1: LOAD R0 X

i2: ADD R0 R0 #1

i3: STORE R0 X

�IncThread:
d1: LOAD R1 X

d2: SUB R1 R1 #1

d3: STORE R1 X

�DecThread:

Critical Sections

�The sections of each thread that cannot be
permitted to execute concurrently are called
critical sections.

�Every section of code that involves an update to a shared
variable should be treated as a critical section and should
have a mutual exclusion constraint imposed upon it.

c1: doStuff()

c2: Y = X + 1

c3: X = 2*Y

c4: doMoreStuff()

�threadC:
d1: doSomeStuff()

d2: X = X - 1

d3: doOtherStuff()

�threadD:

Critical Sections

3

Serialization

�A serialization constraint requires that two

or more events be forced to execute in a

specific order.

Serialization Example

�Consider two threads, threadA that generates a
value of X and threadB that uses the value of X
to calculate the value of Y.

�Assume: X=1, Y=0 are stored in the address space
shared by the threads.

�A serialization constraint is necessary in order to ensure
proper execution.

a1: X = 5

a2: Print X

�threadA:
b1: Y = X + 3

b2: Print Y

�threadB:

Race Conditions

�A race condition is any situation in which

the order of execution affects the final

result.

�The mutual exclusion and serialization

examples both contained race conditions.

Non-Determinism

�In the absence of explicit synchronization

constraints, the order of execution of

concurrent threads can be non-

deterministic.

�The good

�The bad

�The ugly

Random OS Humor

�Alternative acronyms:

�PCMCIA: People Can't Memorize Computer

Industry Acronyms

�SCSI: System Can't See It

�DOS: Defective Operating System

�BASIC: Bill's Attempt to Seize Industry

Control

Thread Synchronization

from the User's Perspective

4

Outline
�Synchronization mechanisms

�Semaphore

�Others

�Synchronization patterns
�Signaling

�Rendezvous

�Mutex

�Multiplex

�Barrier

�Synchronization problems
�Producer-Consumer

�Readers-Writers

�Unisex Bathroom

Semaphores

�A semaphore is an integer with three
differences:

�When created, its value must be initialized,
thereafter the only operations allowed are
increment and decrement.

�When a thread decrements a semaphore, if
the result is negative the thread is blocked on
the semaphore.

�When a thread increments a semaphore, if its
value was negative then one of the threads
blocked on the semaphore is woken up.

Semaphore Syntax

�Creating a semaphore with initial value 1:

mySem = new Semaphore(1);

�Decrementing a semaphore:

mySem.wait();

�Incrementing a semaphore:

mySem.signal();

Alternative Syntax

�Decrement:

mySem.decrement();

mySem.P();

mySem.decrementAndBlockIfResultIsNegative();

� Increment:

mySem.increment();

mySem.V();

mySem.incrementAndWakeAWaitingThreadIfAny();

Alternative Mechanisms

�In addition to semaphores there are a

variety of other mechanisms that are also

used for thread synchronization:

�Locks

�Monitors

�Condition Variables

Synchronization

Patterns

5

Signaling Pattern

�The signaling pattern can be used to

enforce a serialization constraint on two

threads.

�E.g. Thread A must complete section a1

before thread B executes section b2.

Thread A

1. section a1
2. mySem.signal();
3. section a2

Thread B

1. section b1
2. mySem.wait();
3. section b2

Shared Data

1. mySem = new Semaphore(0);

Rendezvous Pattern
�Rendezvous generalizes signaling to work both

ways.

�E.g. Thread A must complete section a1 before

thread B executes section b2 and thread B must

complete section b1 before thread A completes

section a2.

�How can Rendezvous be implemented using

semaphores?

Thread A

1. section a1
2. aReady.signal();
3. bReady.wait();
4. section a2

Thread B

1. section b1
2. bReady.signal();
3. aReady.wait();
4. section b2

Rendezvous Non-Solution

�What’s wrong with the following proposed

solution to the Rendezvous problem?

Thread A

1. section a1
2. bReady.wait();
3. aReady.signal();
4. section a2

Thread B

1. section b1
2. aReady.wait();
3. bReady.signal();
4. section b2

Shared Data

1. aReady = new Semaphore(0);
2. bReady = new Semaphore(0);

Mutex Pattern
�The mutex pattern can be used to enforce a

mutual exclusion constraint on two threads.
� E.g. We know that statement 2 in Thread A should not be

executed concurrently with statement 2 in Thread B.

�How can mutex be implemented using a semaphore?

Thread A

1. section a1
2. mutex.wait()
3. X = X + 1;
4. mutex.signal();

Thread B

1. section b1
2. mutex.wait();
3. X = X - 1;
4. mutex.signal();

Shared:

mutex = new Semaphore(1);

Multiplex Pattern
�The multiplex pattern generalizes the mutex

pattern to allow only a fixed number of threads to

execute specific sections of code concurrently.

�E.g. Allow up to N copies of thread A to execute

section a2 concurrently.

�How can the multiplex pattern be implemented with a

semaphore?

Thread A

1. section a1
2. multiplex.wait();
3. section a2
4. multiplex.signal();

Shared:

multiplex = new Semaphore(N);

Barrier Pattern

�The barrier pattern generalizes the

rendezvous pattern to cases with N

threads.

�E.g. Each copy of thread A must wait for all N

copies before executing section a2.

�Could use one semaphore for each thread… but…
Thread A

1. section a1
2. section a2

6

Barrier Non-Solution #1

�What is wrong with the following proposed

solution for the barrier problem?

Thread A

1. section a1

2. mutex.wait();
3. count++;
4. mutex.signal();

5. if (count == N)
6. barrier.signal();

7. barrier.wait();

8. section a2

Shared Data

1. int N;
2. int count = 0;
3. mutex = new Semaphore(1);
4. barrier = new Semaphore(0);

Barrier Solution

�The following code solves the Barrier

problem.

Thread A

1. section a1

2. mutex.wait();
3. count++;
4. mutex.signal();

5. if (count == N)
6. barrier.signal();

7. barrier.wait();
8. barrier.signal();

9. section a2

Shared Data

1. int N;
2. int count = 0;
3. mutex = new Semaphore(1);
4. barrier = new Semaphore(0);

Turnstile

Barrier Non-Solution #2

�What is wrong with the following proposed

solution for the barrier problem?

Thread A

1. section a1

2. mutex.wait();

3. count++;

4. if (count == N)
5. barrier.signal();

6. barrier.wait();
7. barrier.signal();

8. mutex.signal();

9. section a2

Shared Data

1. int N;
2. int count = 0;
3. mutex = new Semaphore(1);
4. barrier = new Semaphore(0);

Random OS Humor

Synchronization

Problems

Producer-Consumer Problem

�Producer Threads: produce items and adds
them to a shared data structure.

�Consumer Threads: remove items from a shared
data structure and processes them.

Consumer
1. while (true)
2. section c1
3. cItem = buffer.get();
4. processItem(cItem);
5. section c2

Producer
1. while (true)
2. section p1
3. pItem = generateItem();
4. buffer.add(pItem);
5. section p2

7

Producer-Consumer Solution
Solution:

mutex = new Semaphore(1);

items = new Semaphore(0);

Producer:

while (true)

Section p1

pItem = generateItem();

mutex.wait();

buffer.add(pItem);

items.signal();

mutex.signal();

Section p2

Consumer:

while (true)

Section c1

items.wait();

mutex.wait();

cItem = buffer.get();

mutex.signal();

processItem(cItem);

Section c2

Producer-Consumer Non-

Solution

�What’s wrong with the following code for

the Consumer threads?

Consumer

1. while (true)
2. section c1
3. mutex.wait();
4. items.wait();
5. cItem = buffer.get();
6. mutex.signal();
7. process(cItem);
8. section c2

Producer-Consumer with

a Finite Buffer

�Often the buffer for a producer-consumer

problem will have a practical limit on its

size.

�What synchronization constraint does this

add?

�How can we augment our solution to deal with

a finite buffer?

Producer-Consumer

with a Finite Buffer Solution
Solution:

mutex = new Semaphore(1);

items = new Semaphore(0);

Spaces = new Semaphore(N); // N = # of spaces in buffer.

Consumer:

while (true)

Section c1

items.wait();

mutex.wait();

cItem = buffer.get();

mutex.signal();

processItem(cItem);

Section c2

Producer:

while (true)

Section p1

pItem = generateItem();

mutex.wait();

buffer.add(pItem);

items.signal();

mutex.signal();

Section p2

Readers-Writers Problem

�Readers Threads: read information from a
shared data structure (database / variable / file
etc…)

�Writers Threads: write information to a shared
data structure.

�What are the synchronization constraints in this
problem?

Writer:
1. section w1
2. write data
3. section w2

Reader:
1. section r1
2. read data
3. section r2

Readers-Writers Solution
Shared Data

1. readers = 0;
2. mutex = new semaphore(1);
3. roomEmpty = new semaphore(1);

Writers:

1. section w1
2. roomEmpty.wait();
3. write data
4. roomEmpty.signal();
5. section w2

Readers:

1. section r1
2. mutex.wait();
3. readers++;
4. if readers == 1
5. roomEmpty.wait();
6. mutex.signal();
7. read data
8.
9.
10.
11.
12.

mutex.wait();

readers--;

if readers == 0

roomEmpty.signal();

mutex.signal();

8

Lightswitch Pattern

Thread A:
1. section a1

2. mutex.wait();
3. inRoom++;
4. if inRoom == 1 // first in…
5. light.wait(); // turn on light if off (or block)
6. mutex.signal();

7. Critical Section

8. mutex.wait();
9. inRoom--;
10. if inRoom == 0 // last out…
11. light.signal(); // turn off light
12. mutex.signal();

13. section a2

Shared Data
1. inRoom = 0;
2. mutex = new semaphore(1);
3. light = new semaphore(1);

Unisex Bathroom Problem

� A high-tech startup company can only afford space with

a single bathroom with 3 stalls. A CS major working for

the company proposes to solve the problem of allowing

both men and women to use the bathroom using

semaphores.

� Synchronization constraints:

�Men and women cannot be in the bathroom at the same time.

�There should never be more than 3 people in the bathroom at once.

Woman Thread:
1. while (true)
2. doWork();
3. goToBathroom();

Man Thread:
1. while (true)
2. doWork();
3. goToBathroom();

Synchronization

from the OS Perspective

Outline

�How do semaphores do what they do?

�Basic semaphore structure

�A new critical section!

�Semaphore implementations

�Other synchronization mechanisms

Semaphore Structure

�A semaphore consists of an integer

variable (value) and two methods for

manipulating it.

�Notice that each semaphore introduces a new

critical section of it own!

semSignal() {

value = value + 1;

if (value <= 0) {

wakeup a thread

}

}

semWait() {

value = value - 1;

if (value < 0) {

block calling thread

}

}

Semaphore Implementations

�To implement a semaphore, it is

necessary to ensure that execution of the

critical sections is mutually exclusive.

�Three possibilities:

�In kernel mode by disabling interrupts.

�With hardware support:

• Using system calls for blocking.

• Without any OS support.

9

Semaphores in Kernel Mode

�Semaphores can be implemented in
kernel mode by disabling and enabling
interrupts.

�Semaphore creation as well as semWait and
semSignal must be system calls.

semSignal() {

disable interrupts

value = value + 1;

if (value <= 0) {

wakeup a thread

}

enable interrupts

}

semWait() {

disable interrupts

value = value - 1;

if (value < 0) {

enable interrupts

block calling thread

}

enable interrupts

}

Hardware and Mutual Exclusion

�Additional instructions can be provided by
the hardware to enable mutual exclusion
without disabling interrupts.

�One such instruction is TSL (test and set
lock):

�TSL like all machine language instructions is
executed atomically.

TSL addr

reg = mm[addr]

mm[addr] = true

return reg

Mutual Exclusion with TSL

�The TSL instruction can be used to

enforce mutual exclusion as follows:

Thread B:

while(TSL(lock));

/* Critical section */

x = x - 1;

lock = false;

Thread A:

while(TSL(lock));

/* Critical section */

x = x + 1;

lock = false;

Shared:

boolean lock = false;

int x = 0;

Semaphores with TSL
�Semaphores can be implemented using the TSL

instruction to protect the critical sections.
�Each semaphore now has both an integer variable

value and a boolean variable lock.

�System calls are required for blocking and waking up
threads.

semSignal() {

while(TSL(lock));

value = value + 1;

if (value <= 0) {

wakeup a thread

}

lock = false;

}

semWait() {

while(TSL(lock));

value = value - 1;

if (value < 0) {

add thread to semaphore queue

lock = false;

yield

} else

lock = false;

}

Busy Waiting

�With busy waiting, a thread requires CPU

cycles while waiting.

�The semaphore implementation using TSL

uses busy waiting while waiting for the lock.

�This type of waiting is also called a spin-lock.

Semaphores with Busy-Waiting

�If an OS does not provide system calls for

blocking threads, semaphores can be

implemented entirely by using busy

waiting.
semSignal() {

while(TSL(lock));

value = value + 1;

lock = false;

}

semWait() {

while (value <= 0);

while(TSL(lock));

value = value - 1;

lock = false;

}

10

Random OS Humor

�"DOS computers manufactured by
companies such as IBM, Compaq, Tandy,
and millions of others are by far the most
popular, with about 70 million machines in
use worldwide. Macintosh fans, on the
other hand, may note that cockroaches
are far more numerous than humans, and
that numbers alone do not denote a higher
life form."

— New York Times, November 26,
1991.

Other Synchronization

Mechanisms

�Semaphores are only one mechanisms for

enforcing synchronization constraints.

There are several others:

�Locks

�Monitors

�Synchronization in Java

Locks
�A lock is a mechanism for enforcing

mutual exclusion.

�Locks can be implemented using:
�Enable/disable interrupts and blocking

�Busy-waiting with TSL

Thread B:

mutex.lock();

/* Critical section */

x = x - 1;

mutex.unlock();

Thread A:

mutex.lock();

/* Critical section */

x = x + 1;

mutex.unlock();

Shared:

Lock mutex = new Lock();

int x = 0;

Monitors

�Code within a monitor may only be

executed by a single thread at a time.

monitor <name> {

<shared variables>

initialization(<params>) {

// initialization code

}

procedure P1(<params>) {

// code in P1

}

procedure P2(<params>) {

// code in P2

}

…

}

Condition Variables

�Condition variables are a mechanism by
which threads executing within a monitor
can block themselves and be woken up by
other threads.

�Condition variables have two operations:
�wait() - causes the calling thread to block.

�signal() - wakes up a thread blocked on the
condition variable.

• Either the signaling thread or the woken thread must wait
until the other exits the monitor before continuing.

• If no threads are blocked on the condition variable then a
signal has no effect and the signaling thread continues.

Semaphore via a Monitor
monitor Semaphore {

int value;

condition blocked;

initialization(int initVal) {

value = initVal;

}

procedure semWait() {

value--;

if (value < 0)

blocked.wait();

}

procedure semSignal() {

value++;

if (value <= 0)

blocked.signal();

}

}

11

Java Synchronization

�Synchronization in Java is accomplished

with a mechanism similar to a monitor.

�Every object has a lock and a condition

variable.

�Methods can be declared synchronized.

�Before a thread is permitted to execute a

synchronized method, the thread must acquire the

object’s lock.

• This happens automatically.

�Threads may wait() and notify() the object’s

condition variable.

• notify() is a signal().

Java Semaphore

Implementation
public class Semaphore {

private int value;

public Semaphore(int initVal) {

value = initVal;

}

public void synchronized semWait() {

value--;

if (value < 0)

try { wait();

} catch(InterruptedException e) {}

}

public void synchronized semSignal() {

value++;

if (value <= 0)

notify();

}

}

