
1

Multithreaded Processes

Dickinson College

Computer Science 354

Spring 2006

slides courtesy of Professor Grant Braught

Road Map

� Past:
� What an OS is, why we have them, what they do.

� Base hardware and support for operating systems

� Process Management

� Process Scheduling

� Present:
� Multi-Threading

� Future:
� Thread Synchronization

� Memory management

� Storage management

� Protection and Security

Multithreading

�Some terminology

�Multithreading from the user perspective

�What are threads and multithreading?

�Threads in Java - pt 1.

�Threads in Java - pt 2.

�Examples and benefits of multithreading

�Multithreading from the system

perspective

Terminology

�Some terminology that is useful in

discussing the way processes and threads

are executed:

�Sequential Execution

�Concurrent Execution

�Parallel Execution

Sequential Execution

�Sequential Execution: execution events

(A CPU operation or an I/O operation)

occur one at a time and one after the

other.

Concurrent Execution

�Concurrent Execution: when two or more

execution events either actually or

apparently occur simultaneously.

2

Parallel Execution

�Parallel Execution: a subset of

concurrent execution in which the

execution actually does happen

simultaneously.

�Examples:

�A Disk I/O and a CPU operation

�Several CPU operations on a Multiprocessor

system

Multithreading from the

User’s Perspective

Thread

�A thread is a point of execution within a
process.

�So a multi-threaded process has multiple
points of concurrent execution within the
process.

�Think: Timesharing or multiprocessing among
multiple execution points within a single
program.

�A traditional processes can be thought of as being
a process with a single thread.

A First Java Thread Example

public class FirstThread {

public static void main(String[] args) {

System.out.println("Main thread running...");

Thread t1 = new myThread(1);

t1.start();

System.out.println("Main thread finished...");

}

}

class myThread extends Thread {

private int id;

public myThread(int id) {

this.id = id;

}

public void run() {

System.out.println("Thread " + id + " running...");

}

}

Threads Execute Concurrently

public class ConcurrentThreads {

public static void main(String[] args) {

System.out.println("Main starting...");

Thread t1 = new myThread2(1);

Thread t2 = new myThread2(2);

t1.start();

t2.start();

for (int i=0; i<1000; i++) {

System.out.println("Main running");

}

System.out.println("Main ending...");

}

}

class myThread2 extends Thread {

private int id;

public myThread2(int id) {

this.id = id;

}

public void run() {

for (int i=0; i<1000; i++) {

System.out.println("Thread " + id +

" running...");

}

}

}

Yield and Join

public class YieldJoin {

public static void main(String[] args) {

System.out.println("Main starting...");

Thread t1 = new myThread3(1);

Thread t2 = new myThread3(2);

t1.start();

t2.start();

System.out.println("Main waiting...");

try {

t1.join();

t2.join();

}

catch (InterruptedException e) {}

System.out.println("Main ending...");

}

}

class myThread3 extends Thread {

private int id;

public myThread3(int id) {

this.id = id;

}

public void run() {

for (int i=0; i<100; i++) {

System.out.println("Thread " + id +

" running...");

Thread.yield();

}

}

}

3

Threads vs. Processes

�Threads executing within the same
process share most of their address
space.

�All threads in a process share the same:
�Code segment

�Data segment

�Heap

�However, each thread must have its own:
�Program counter

�Register values

�Stack segment

Threads Share Data and Heap

public class SharedAddressSpace {

public static void main(String[] args) {

int[] vals = {-1, -1, -1};

Thread t0 = new myThread4(0,vals);

Thread t1 = new myThread4(1,vals);

Thread t2 = new myThread4(2,vals);

t0.start(); t1.start(); t2.start();

try {

t0.join(); t1.join(); t2.join();

}

catch (InterruptedException e) {}

System.out.println("vals[0] = " + vals[0]);

System.out.println("vals[1] = " + vals[1]);

System.out.println("vals[2] = " + vals[2]);

}

}

class myThread4 extends Thread {

private int id;

private int[] array;

public myThread4(int id, int[] array) {

this.id = id;

this.array = array;

}

public void run() {

array[id] = id;

}

}

Examples of Multi-Threading

�Many common processes make extensive

use of multi-threading:

�Web browser

�Animation threads

�User interaction threads

�Database server

�Web server

Multithreading Benefits

�Anything that can be done with a

multithreaded program can also be done:

�With a single threaded program

�With cooperating processes and IPC

Multithreading Benefits

�Compared to a single threaded version of

the same program a multithreaded version

may exhibit

�better responsiveness

�improved performance.

Multithreading Benefits

�Compared to an implementation using

cooperating processes a multithreaded

implementation will be:

�more economical in terms of system resource

usage

�more efficient in terms of execution speed

�Creation

�Context Switching

�Communication

4

Multithreading vs. Cooperating

Processes

�So when is it preferable to use

multithreading and when is it preferable to

use cooperating processes?
Multithreading from the

OS Perspective

Thread Implementations

�Multithreading can be implemented at two

distinct levels:

�User Level Threads

�Kernel Level Threads

User Level Threads

�User level threads within a process are

managed by a software library.

�The OS unaware of user level threads.

�Threads within a process:

�Are non-preemptive

�Suffer from one-block-all-block

OS Kernel

Thread Lib

T1 T2 T3 T4

Thread Lib

T1 T2 T3

ProcessCProcessA ProcessB

Kernel Level Threads

�Kernel level threads are managed by the
operating system.
�The OS uses Thread Control Blocks (TCBs) to

manipulate and schedule threads.

�Threads within a process:
�May be preemptive

�Can be spread across multiple processors

T1 T2 T3 T4

ProcessA ProcessB

T1 T2 T3

OS Kernel

ProcessC

T1

Random OS Quote

�“The human mind ordinarily operates at

only ten percent of its capacity — the rest

is overhead for the operating system.”

Nicholas Ambrose

5

Threading Models

�The relationship between threads in a user

program and threads in the kernel follow

one of four models:

�One-to-One

�Many-to-One

�Many-to-Many

�2-level model

One-to-One

�In a one-to-one model every thread

created by a user program maps to its own

kernel level thread.

�Pure kernel level threads.

User View

Kernel View

Many-to-One

�In a many-to-one model, multiple user

level threads are mapped to a single

kernel level thread.

�Pure user level threads.

User View

Kernel View

Many-to-Many

�In a many-to-many model, a thread library

multiplexes a collection of user level

threads onto an equal or smaller number

of kernel threads.

User View

Kernel View

2-Level Model

�The 2-Level Model combines a many-to-

many model with the one-to-one model.

�Multiple many to many mappings can exist

within a process.

�Including the special case where one user thread

can be bound to one kernel thread.

User View

Kernel View

Thread Implementations

�Each OS and language has its own

implementation of threads:

�Win32

�POSIX Threads (pThreads)

�Green threads

�GNU portable threads

�Java

