
COMP 314 Class 3: Turing machines: the simplest computers

Computing is normally done by writing certain symbols on paper.

— Alan Turing, On computable numbers . . . (1936)

Python programs are a little problematic for studying the theory of computer science.
It’s hard to be absolutely certain about the meaning of a Python program. Even a very
simple program, such as “print ’yes’”, could do something unexpected. Perhaps, when
invoked with certain commandline arguments, this program triggers a bug in the Python
interpreter which causes a crash. This is extremely unlikely, but we can’t completely rule
it out. Because of this (and for some other reasons too), we need to study a much more
simple, abstract and fundamental model of computation.

Our fundamental model of computation is called the Turing machine. Before trying to
understand the definition of a Turing machine, take a look at Figure 1. Although Turing
machines are completely abstract, it’s helpful for us humans to maintain two distinct
views of them: (i) a practical view, as a machine that could be constructed from physical
materials; and (ii) a mathematical view, as a collection of mathematical objects with no
physical counterparts. Figure 1 shows these two views. In the practical view, we see the
three main physical pieces of the Turing machine: the control unit, the read-write head,
and the tape. The tape contains cells, and each cell can store a single symbol (or be blank).
The read-write head can move up and down the tape, informing the control unit of what
symbols it sees and (optionally) erasing the existing symbols and writing new ones. The
control unit issues instructions to the read-write head, and switches between the various
states labeled on the dial at the front of the control unit. Note that this dial is for display
only: we can’t reach in and turn this dial ourselves—it is completely under the control of
the control unit.

The mathematical view of this Turing machine is shown in the bottom panel of Figure 1:
the machine is in state s273, the content of the tape is “a c [blank] z a” followed by
infinitely many blanks, and the location of the head is cell 3 (assuming we index the tape
cells starting with 0).

Now we’re ready for a more formal, mathematical definition a Turing machine. A
Turing machine is composed of five separate mathematical objects: two sets and three
functions. The two sets in the definition of a Turing machine are:

� Alphabet. A finite set of symbols, which must include a special symbol called the
blank symbol. In this book, we will almost always use the set of ASCII characters
as the alphabet, with one particular character designated as the blank symbol. It
just so happens that the ASCII value 7 doesn’t represent a printable character (it is
used to represent a beep from the computer’s speaker), so let’s designate this as the
blank symbol. To write the blank symbol as part of a string, we will use “l ”. So
the content of the tape in Figure 1 is “acl za”
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Figure 1: Two views of a Turing machine
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� State-set. A finite set of states, which must include a special state called the start
state and another special state called the accepting state. In this book, the states
will be denoted s0, s1, s2, . . ., and the start state will always be s0. The accepting
state will always be one of the numbered states (e.g. s47), but we will mostly use the
notation sAccept as a synonym for the accepting state.

The three functions in the definition of a Turing machine each take two inputs: the
current state s and the current symbol x. Their definitions are:

� State function NewStateps, xq: output is the new state s1 which the Turing machine
will transition into.

� Symbol function NewSymbolps, xq: output is the new symbol x1 which the head
writes in the current tape cell. (Of course, it’s possible to have x1 � x in which case
the symbol on the tape remains unchanged.)

� Direction function Directionps, xq: output d1 is either Left, Right or Stay, depend-
ing on whether the head should move left, right or stay where it is. (If the head is
already at the left end of the tape, and it is commanded to move left, then it stays
where it is instead.)

Sometimes, it’s more convenient to think of these three functions as a single function
that returns a 3-tuple ps1, x1, d1q. This combined function is called the transition function
of the Turing machine. Mostly, however, we will think of these functions as three separate
entities and refer to them as transition functions instead. Note that the transition functions
don’t have to be defined for all possible inputs s and x. (Technically speaking, they are
partial functions.)

You have, no doubt, already guessed how a Turing machine works. It begins a compu-
tation in its start state, with some finite sequence of symbols—the input—already written
on the tape, and with the read-write head at position zero. The machine then applies the
transition functions over and over again (typically writing some new symbols on the tape
and moving the head around) until it gets into a situation where the transition functions
are not defined. At this point, the machine halts, and the sequence of symbols left on the
tape is defined to be the output of the computation.

As our first example, let’s define a Turing machine called LastTtoA that works on
genetic strings. A genetic string is just an ASCII string that contains only the characters
a, c, g, and t. As you probably know, these letters represent the possible bases in a string
of DNA. We are using genetic strings here to emphasize that, even though Turing machines
are completely abstract mathematical concepts, they can be used to work with real-world
data.

Anyway, let’s get back to our first example of a Turing machine, LastTtoA. The machine
will output an exact copy of the input, except that the last t of the input will be mutated
to a c. (For simplicity, we will assume that the input is guaranteed to contain at least one
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state s symbol x NewStateps, xq NewSymbolps, xq Directionps, xq

s0

c s0 c Right
g s0 g Right
a s0 a Right
t s0 t Right

blank s1 blank Left

s1

c s1 c Left
g s1 g Left
a s1 a Left
t s2 a Stay

blank s1 blank Left

Figure 2: Transition functions for a Turing machine that changes the last t of a genetic
string to an a.

t.) The alphabet for this Turing machine will be the set of ASCII characters (including
a blank as described above). It turns out we need three states for this machine, so the
state-set is ts0, s1, s2u, with s0 being the start state and s2 being the accepting state.

The transition functions for the LastTtoA machine are defined in Figure 2. It should be
immediately obvious that tabulating the transition functions, as in this Figure, is a terrible
way to explain a Turing machine to a human. It’s almost impossible to gain intuition about
how the machine works by looking at a table of this kind.

Instead, Turing machines are generally described using a state diagram like the one
shown in Figure 3. The states of the machine are represented by circles (except for the
start state which has a triangle next to it, and the accepting state which is an double circle).
Arrows between the states indicate transitions, and the labels on these arrows give details
about the transition. Specifically, these labels consist of the current symbol followed by a
colon, then the new symbol to be written (if any) followed by a comma, then the direction
to move (using the obvious abbreviations L, R, and S). For example, the label c:R means
“if the symbol currently under the head is a c, follow this arrow and move the head right.”
Another example from Figure 3 is t:a,S, which means “if the symbol currently under the
head is a t, replace it with an a, follow this arrow, and leave the head where it is.”

We’re ready to do a computation on this Turing machine now. Suppose the input is
c t c g t a. Then the initial configuration of the machine is s0: c t g a t a. Here
you can see we have adopted an obvious notation for the machine configuration: the name
of the current state, followed by a colon, followed by the tape contents, with the current
symbol in a box. Using this notation, the entire computation would be:
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s0 s1 s2

c;R
g;R
t;R
a;R

    c;L
    g;L
    a;L

t;a,S;L

;L

Figure 3: State diagram for the LastTtoA Turing machine.

s0: c t c g t a

s0: c t c g t a

s0: c t c g t a

s0: c t c g t a

s0: c t c g t a

s0: c t c g t a

s0: c t c g t a l

s1: c t c g t a

s1: c t c g t a

s2: c t c g a a

Note that we generally don’t bother showing any blanks after the last non-blank symbol on
the tape. But when the head goes into that region, as in the seventh step of the computation
above, we can explicitly show the blanks up to and including the head location.

As you can see, this LastTtoA Turing machine has done what it promised: the output
consists of the input with its last t converted to an a.

0.1 Abbreviated notation for Turing machine diagrams

We can make our Turing machine diagrams simpler by using abbreviated notation. When
there are several possible read characters that produce the same action, these can all be
listed separated by commas. To specify an action that applies to all read characters other
than one particular one, use an exclamation point. Examples of both of these abbreviations
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s0 s1 s2

c,g,t,a;R

t;a,S;L

!t;L

Figure 4: State diagram for the LastTtoA Turing machine, using abbreviated notation.
This diagram is equivalent to the one in Figure 3.

are shown in Figure 4. This figure represents exactly the same information as Figure 3,
assuming the input string contains only symbols drawn from the set tc, g, a, t,lu.

We’ll using one additional abbreviation: the symbol “�” will represent the character
currently under the read head. This makes it easy, for example, to specify a transition
that moves right regardless of the current symbol: this would be achieved with the label
“�;R”.

1 Creating your own Turing machines

One good way to experiment with your own Turing machines is using some software called
JFLAP, developed by researchers at Duke University. You can download the software from
jflap.org. The software is mostly self-explanatory, but here are a few points that will
make it easier to use:

� JFLAP Turing machines have a two-way infinite tape—that is, the machine starts
with a tape that extends infinitely in both directions. In contrast, our definition of
a Turing machine uses a one-way infinite tape, which has a starting point at cell
0, and extends infinitely in only one direction. We will soon discover that the two
definitions are equivalent (in terms of what the Turing machine can compute), but
the distinction between one-way and two-way tapes does affect some of the details of
how to program the Turing machine.

� In JFLAP, you must specify the value of the symbol to be written at each step, even if
you want to leave the symbol unchanged. However, you can use the special character
“�” to achieve this. So instead of “a,b;R” you can use “a,b;�,R”.

� JFLAP uses the terminology final state, instead of accepting state. And in JFLAP,
machines can have multiple final states.
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Figure 5: State diagram for the containsZ Turing machine.

Useful exercise: use JFLAP to implement a Turing machine that changes every “c” to
a “g”, and every “g” to a “c”. Test your machine on multiple inputs.

2 Turing machines as decision programs

Clearly, we could regard the output of a Turing machine as its decision. So, if the machine
halted with tape contents exactly equal to “yes”, we would regard this as a Yes decision
(and any other output would correspond to a No decision). However, computer scientists
usually take a different approach to this definition. Instead of looking at the output of
the machine, we look at which state it halted in. If it halted in the accepting state, the
decision is Yes (and we also say that the Turing machine accepts the input); if it halted in
any other state, the decision is No (and we also say that the Turing machine rejects the
input).

For the remainder of the book, decisions by Turing machines will be defined this way (i.e.
according to whether they halted in the accepting state). But decisions by Python programs
will be defined, as before, according to whether or not they output “yes”. Figure 5 gives
an example of a Turing machine regarded as a decision program. This is the containsZ

Turing machine, which accepts any input containing a “Z”.

3 Fancier Turing machines

As we will soon see, the standard Turing machine is in fact capable of performing any
computation that can be done by a modern computer. But it turns out to be very useful
to also consider fancier versions of the Turing machine. As our first example of this, let’s
consider a Turing machine that has two tapes. From now on, the original, standard Turing
machine defined above will be called the vanilla Turing machine, to distinguish it from its
fancier variants.
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3.1 Two-tape Turing machines

It’s obvious that a two-tape machine is easier to program than a vanilla machine. Input will
still arrive on one of the two tapes, but we can use the other tape for storing intermediate
results during a calculation, and that will avoid having to shuffle the head up and down the
tape so much. Note that the two tapes have to move in sync, so at any particular instant,
the read-write head has access only to the same cell on both tapes. For example, suppose
the read-write head is positioned at cell number 5. Then the machine can read the symbol
at cell 5 on tape A, and write a symbol at cell 5 on tape B, without having to move the
tape. But to write a symbol at cell 7 on tape B, both tapes would need to move up to
cell 7 first. When we want to emphasize that the positions of the tapes are fixed, relative
to each other, we will call this kind of multi-tape machine a multiple-fixed-tape machine.

So, is a two-tape machine actually more powerful than a vanilla machine? This depends
on what we mean by “more powerful”. If we are concerned with how many steps it takes
to complete a computation, then it can be shown a two-tape machine is more efficient
than a single-tape one. But if we are concerned with whether or not a computation can
be performed at all, it turns out that the two models are equivalent. Specifically, is there
any computation that can be done on a two-tape machine, but not on a vanilla machine?
The answer is no: any two-tape machine can be converted into a one-tape machine that
produces exactly the same output on a given input (but it may take many more steps to
do so). The following claim gives a (mostly) formal proof of this fact.

Claim: Given a two-tape Turing machine T , there exists a vanilla Turing machine V
that computes the same function.

Proof of the claim: Recall that our Turing machines usually use the set of ASCII
characters as their alphabet—an alphabet of 256 possible symbols, such as a, b, X, Y, and
so on. However, in defining a Turing machine, we are free to use any alphabet that we
want. The machine V will instead use pairs of ASCII characters as its alphabet. This
gives us a huge set of 256 � 256 � 65, 536 possible symbols, including aa, ab, bX, Xa, XY,
and YY. The new machine V will have the same states as T . The main idea is that V
will perform the same operations as T , but whenever T operates on the first tape, V will
operate on the first symbol in the current pair. And when T operates on the second tape, V
operates on the second symbol in the current pair. (A completely formal proof would give
a careful specification of V ’s transition functions, but these details are omitted. Hopefully,
the description of V ’s operation is already convincing enough.) �

3.2 Multi-tape Turing machines

A very similar proof shows that a vanilla Turing machine can simulate a k-fixed-tape
machine, for any positive integer k. For example, to simulate a 5-tape machine, we use
an alphabet whose symbols consist of groups of five ASCII characters (like “xy2yz”). So,
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in terms of computability, a vanilla machine is just as powerful as any multiple-fixed-tape
machine.

3.3 Multiple independent tapes

The requirement to keep the tapes in sync means that programming a multi-tape machine
is still rather laborious. It would be much easier if we could allow the tapes to move
independently (or, equivalently, allow the machine to have multiple independent read-
write heads). Once again, it turns out that this new feature improves efficiency and ease
of programming, but adds nothing in terms of computability: a vanilla machine can still
compute anything that a multiple-independent-tape machine can compute. To prove this,
we don’t need to go all the way back to the vanilla machine. We already know that vanilla
machines are equivalent to multiple-fixed-tape machines—so all we need to do now is show
that a multiple-fixed-tape machine can simulate a multiple-independent-tape machine.

Claim: Let I be a multiple-independent-tape Turing machine. Then there exists a
multiple-fixed-tape Turing machine F that computes the same function as I.

Proof of the claim: Initially, assume I has only two tapes, A and B (the generalization
to more tapes will be obvious). Machine F will have four tapes: A1, A2, B1, B2. Tapes A1

and B1 in F perform exactly the same roles as tapes A and B in I. Tapes A2 and B2 are
used to keep track of where the head of I is on each of its tapes. Specifically, A2 and B2

are always completely blank except for a single “x” symbol in the cell corresponding to I’s
head position. For example, suppose that at some point in I’s computation, the read-write
head is positioned at cell 9 for tape A and cell 23 for tape B. Then at the corresponding
point in F ’s simulation of this computation, tape A2 is blank except for an “x” at cell 9,
and tape B2 is blank except for an “x” at cell 23. Of course, the real head on machine
F has to find the relevant “x” before every single simulated read or write, which could be
time-consuming. In the worst case, it involves moving the head all the way to the left end
of the tape, then scanning right until the “x” is found. Nevertheless, this can certainly be
done, so the claim is proved. �

Now that we know all these models have equivalent computational power, the distinc-
tion between fixed and independent tapes becomes mostly irrelevant. But for concreteness,
let’s agree that from now on the term multi-tape refers to multiple independent tapes.

3.4 Two-way infinite tapes

Since the JFLAP software uses Turing machines with two-way infinite tapes, it’s worth
briefly mentioning how these can be simulated using our own one-way variant. This relies
on a simple trick: you use a 2-tape machine, where tape A stores the content of the left-
hand half of the two-way infinite tape, and tape B stores the content of the right-hand half.
Completing a formal proof that this simulation works correctly requires several details to
be fleshed out, but it’s not hard to do.
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3.5 From vanilla Turing machine to Python program

To summarize what we know so far: vanilla Turing machines can simulate multiple-fixed-
tape machines, which can simulate multiple-independent-tape machines. These two sim-
ulation proofs are just the first baby steps in a chain of proofs that can be used to show
how a vanilla Turing machine can simulate any real computer or programming language.
To examine the entire chain in detail would take us too long (and, quite frankly, be too
tedious). But it’s extremely important to be aware of the basic outline of this chain of
simulations which takes us from vanilla Turing machines to the Python programs we know
and love. Here is a brief sketch of how you could do it:

� Random-access Turing machine. A random-access Turing machine has, in ad-
dition to the usual tape(s) and head, a register that stores an arbitrary integer. The
register can be used as an address to read or write symbols in a given cell on the tape.
For example, if the register currently contains the value 588, the machine can read or
write tape cell 588 in a single operation, regardless of the current position of the head.
The machine also has special operations for transferring integer values between the
register and the tape(s). We can simulate a random-access Turing machine with a
standard multi-tape machine by using a separate tape for the register. Each random
access is simulated by running a small sub-program that counts the relevant number
of cells from the left end of the tape.

� Scute: simple computer with RAM, registers, and a basic instruction set.
From the random-access Turing machine, we can leap straight to a simulation of a
simple idealized computer. Let’s call our simple computer a Scute—the name comes
from selecting some of the letters from the phrase “simple computer”. A scute has
several general-purpose registers that can store a single ASCII character, and a spe-
cial address register that can store an arbitrary integer. (Yes, the address register
has an infinite amount of storage available, since the integer it stores could be ar-
bitrarily long. Remember, this is an idealized computer.) Scutes have an infinite
amount of RAM, numbered sequentially, with each cell capable of storing a single
ASCII character. A given scute has a fixed program (not stored in the RAM—
it’s best to think of the program being in a ROM that is executed at boot time).
The program is written in a simple assembly language called scutel. (“Scutel” is a
contraction of “scute language”, and is pronounced scoot-ill). Scutel programs are
written with a basic instruction set containing familiar instructions such as LOAD,
STORE, ADD, SUBTRACT, MULTIPLY, DIVIDE, AND, OR, NOT, BRANCH,
BRANCH IF ZERO, BRANCH IF NEGATIVE. The precise definitions of these in-
structions are unimportant. But in case you’re curious, the model I have in mind is
that: LOAD and STORE transfer a single ASCII character between RAM and one
of the general-purpose registers (with the RAM address specified by the address reg-
ister); the arithmetic operations like ADD operate on signed 8-bit values (i.e. ASCII
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values regarded as signed integers) stored in the general-purpose registers; logical
operations like AND are bitwise; the conditional branch operations are based on the
value stored in a specified register.

It’s relatively easy to sketch the simulation of a scute S by a random-access Turing
machine R. R’s single register mimics S’s address register. S’s general-purpose
registers are each simulated by a separate tape in R (this is unnecessarily wasteful,
but that’s irrelevant). S’s RAM is simulated by another of R’s tapes. The ROM-like
scutel program is built into R’s transition function. R has a state for each line in
the scutel program, and various other states that help with implementing individual
instructions. It’s not hard to check each scutel instruction in turn, verifying that
each can be translated into a short sequence of transitions in R’s ccontrol unit.

� A real, modern computer. The CPUs of modern computers often have dozens
of registers and a vast array of instructions, but it’s obvious that these features
can be simulated by a scute. In fact, undergraduate computer organization and
architecture classes are sometimes taught with this underlying theme: by starting
with a few simple components (like AND and OR gates), we can build successively
more complex components until we have a complete modern computer and operating
system. My favorite demonstration of this is the book From NAND to Tetris, by
Noam Nisan and Shimon Schocken. Needless to say, we won’t be deviating into a
computer architecture class here. We have too much theoretical computer science to
study instead.

� Python programs. Once we can simulate a modern computer, we can simulate any
software too, and this includes Python programs. One way to see this is to appeal
to the well-known equivalence between hardware and software. But an alternative is
to imagine configuring your computer so that it automatically runs some particular
Python program on startup. Once it is set up in this way, your computer can be
regarded as a single, fixed piece of computer hardware that simulates the Python
program. In particular, this means we can use Turing machines to simulate the
Python programs we have been using as the model of computation in earlier chapters
of the book. This point is probably obvious already, but I would like to make it
absolutely clear

So, although he have omitted all the formal details, the above chain of reasoning shows
that a vanilla Turing machine can simulate any Python program. Hence, any computation
that can be performed by a Python program, can also be performed by a Turing machine.

3.6 Going back the other way: simulating a Turing machine with Python

In this book, Python programs are the main model of computation. But most theoretical
computer science is done in terms of Turing machines. Therefore, it’s important for us
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to realize that Python programs and Turing machines are precisely equivalent, in terms
of what computations they are capable of performing. In the previous section, we saw
that Turing machines can simulate Python programs. But what about the other direction?
Can Python simulate a Turing machine? If so, this would complete the proof that the two
models are equivalent.

Fortunately, it’s an easy exercise to implement a Turing machine in Python. We would
need to agree on a notation for Turing machines, but once that is done, it’s trivial to read
in the description of a Turing machine and its input, and then simulate the execution of
the machine. I’ll leave it to you to try this on your own if you’re interested.

There is one wrinkle in the simulation. Turing machines have an infinite tape, whereas
real computers have a finite amount of memory. So it’s tempting to think that we cannot,
in fact, simulate every Turing machine using Python. This turns out to be false, and a
simple example will demonstrate why. Consider a Turing machine that prints the infinite
sequence “1ê2ê3...” on its tape. Clearly, we can simulate this with the Python program
“x=1êwhile True: print x; x=x+1”.

We are taking advantage of one of the nice features of Python here: Python uses
unbounded integers by default, so unlike an int in Java or C++, the value of x will never
overflow. But on the real computer, the length of x would eventually exceed the size
of the computer’s memory. So we need another caveat: Python programs can simulate
Turing machines, provided we are willing to add sufficient memory to our computer. In
principle, we can add as much memory as we need (perhaps by using some kind of virtual
memory backed by cloud storage, for example). Alternatively, we can just imagine a Python
program running on an idealized computer that does have infinite memory. All the results
in this book will be valid for this kind of idealized computer.
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