
COMP 314 Class 6: Rice’s Theorem, and many more
undecidable problems

1 Programs

From now on, we will use the word program to mean any kind of computer program,
including Python programs and Turing machines.

2 Problems again

Recall that in class 2, we defined a problem to be a function that maps ASCII strings
to ASCII strings, and a decision problem to be a problem whose output is always “yes”
or “no”. Given a decision problem, we say a program decides the problem if it always
terminates with the correct output (“yes” or “no”).

More precisely, denote the decision problem by d, let I be an ASCII string input for d,
and write the output for this problem as dpIq. Let P be a program, and write P pIq for the
output of P on input I. Then P decides d if P pIq � dpIq for all I.

A decision problem is decidable if there exists a program that decides it; otherwise, the
problem is undecidable. Figure 1 shows three examples of Python programs that decide
problems. From these examples, it is clear that the problems IsBinaryString, IsPrime,
and Has3Gs are decidable. On the other hand, we have seen in previous classes that various
problems are undecidable, including HaltsOnInput, HaltsOnEmpty, HaltsOnSome,
HaltsOnAll, YesOnInput and AlwaysYes.

Of course, many interesting problems are not decision problems, but we would still like
to know whether we can solve these problems using a computer. Given a problem, we say
a program computes or solves the problem if it always terminates with the correct output.
The formal definition is exactly as for decision problems, but we will denote the problem
by f (for f unction) instead of d (for decision). Note that we will reserve the letter P for
Program; we will never use p or P for problem. Formally then, a program P computes a
problem f if P pIq � dpIq for all ASCII input strings I.

There are no surprises with the definitions of computable and uncomputable: a prob-
lem is computable if there exists a program that computes it; otherwise, the problem is
uncomputable.

It’s important to realize that P pIq can be the special value Loop, which means that
P doesn’t terminate on input I—instead, it goes into an infinite loop or some other kind
of never-ending computation. However, if P computes or decides some problem, then this
behavior is not permitted: P is required to terminate for every input I.

1

Python program binaryStrings.py
2 isBinary = True

for c in input:
4 if c != ’0’ and c != ’1’:

isBinary = False
6 if isBinary:

print "yes"

8 else:
print "no"

Python program isPrime.py
2 inputNum = int(input)

isPrimeNum = True
4 for i in range(2,inputNum): # inefficient, but it works

if inputNum % i == 0:
6 isPrimeNum = False

if isPrimeNum:
8 print "yes"

else:
10 print "no"

Python program has3Gs.py
2 if input.count("g") >= 3:

print "yes"

4 else:
print "no"

Figure 1: Three examples of Python programs that decide problems. Top: De-
cides whether the input is a binary string. Middle: Decides whether the input is a string
representing a prime number. Bottom: Decides whether the input contains 3 or more g’s.

2

3 Semi-deciding

Undecidable problems are bad news for computers, but it turns out that some are not quite
as bad as others: these are the semi-decidable problems. Informally, a decision problem is
semi-decidable if you can compute all of the “yes” answers correctly, but not necessarily
all of the “no” answers.

Formally, a program P semi-decides a decision problem d if:

� P pIq � “yes”, for all I with dpIq � “yes”; and

� P pIq � “no” or P pIq � Loop, for all I with dpIq � “no”.

The key point is that P pIq always give the right answer if it terminates, but on “no”
instances, P is allowed to run forever.

Unsurprisingly, a decision problem is semi-decidable if some program semi-decides it.
Exercise. By definition, all decidable problems are also semi-decidable. But which of

the undecidable problems listed above are semi-decidable?
Solution (Try to come up with this on your own): HaltsOnInput, Halt-

sOnEmpty, YesOnInput. (In contrast, it can be shown that HaltsOnAll and Al-
waysYes are not even semi-decidable—but we won’t prove it in this course. Also, it’s
worth noting that HaltsOnSome is, rather surprisingly, semi-decidable. but again, we
won’t prove it here.) It’s easy to write Python programs that semi-decide each of these
problems. For example, Figure 2 shows how to do this for HaltsOnInput: you just
execute the given program with the given input (this is easily done using our universal
program for executing other programs). If that terminates, we print “yes”; otherwise, our
program runs forever, but that doesn’t matter since it isn’t required to terminate on “no”
instances.

Python program HaltsOnInput.py
2 from universalFunction import universal

universal(input)
4 print "yes"

Figure 2: The Python program haltsOnInput.py, which semi-decides the problem Halt-
sOnInput.

4 Our version of Rice’s theorem

4.1 Problems about problems

Just as we can write programs that analyze other programs, we can consider problems about
other problems. Consider, for example, the relatively simple (and certainly decidable)

3

problem IsPrime, which asks whether a string represents a prime number. Now suppose
you are given a program, and asked to determine whether that program decides IsPrime.
This is, in itself, a problem that we call DecidesIsPrime. The input is a program P , and
the output is “yes” if P decides IsPrime, and “no” otherwise.

We can repeat this process with any decision problem d. The particular case of d being
IsPrime yields DecidesIsPrime; a general decision problem d yields a new problem that
we write as Decides(d). So, the input to Decides(d) is a program P , and the output is
“yes” if P decides d, and “no” otherwise.

We can define the same kind of “problems about problems” for non-decision problems
f : the problem Computes(f) asks whether the input P computes the problem f .

As we will see in the next section, these “problems about problems” are almost always
undecidable.

4.2 Finally, Rice’s theorem

Rice’s theorem is usually stated in a fairly general setting, about sets of semi-decidable
problems. But it is still very useful, and easier to understand, if we consider the following
simpler variant.

Our simplified version of Rice’s Theorem: Let d be a decidable problem. Then
Decides(d) is undecidable.

Proof: The proof will be sketched in class, but will not be part of any homework or
exam. As you might expect, it involves a reductin from the halting problem.

Examples: Many of the undecidable problems we have seen earlier in the course can be
proved undecidable by a simple application of Rice’s theorem. This includes:

� YesOnRedDevils: take d to be the problem of determining whether the input I is
“Red Devils”.

� AlwaysYes: take d to be the trivial problem whose answer is “yes” for all inputs.

� YesOnEvenLength: take d to be the problem of determining whether the input I
is of even length.

4.3 Stronger versions of Rice’s theorem

Rice’s theorem still holds when d is:

� a semi-decidable problem. [Example, using ideas that haven’t been covered yet: Take
d to be determining whether a string is in the language generated by a given grammar.
Then Rice’s theorem tells us that, given a program, it’s undecidable whether the
program decides membership in the language.]

4

� a set of semi-decidable problems (with a minor technical caveat). [Examples, using
ideas that haven’t been covered yet: Determining whether a program accepts a regular
language, or a context-free language – we will come back to these ideas later in the
course.]

� a computable problem. Example: determining whether a given program adds its
inputs.

4.4 But not everything is undecidable

Rice’s theorem gives us a huge new supply of undecidable problems about programs. You
might be tempted to think, at this point, that any problem that takes a program as input
is undecidable. However, this is not true. Here are three examples of decidable problems
that take programs as inputs:

� Given a Python program, determine whether the Python program contains more
than 50 lines.

� Given a Python program, determine whether the Python program contains any vari-
ables called numWombats.

� Given a Turing machine, determine the number of halting states in the machine.

Exercise. Prove, at least informally, that each of these problems is decidable.

5 Undecidable problems aren’t always about programs

A vast array of problems are undecidable. Many of them appear to have nothing to do with
computers or computer programs. See the Wikipedia page “List of undecidable problems”
for a good selection.

5

