
COMP 314 Class 19: Nondeterministic finite automata
(NFAs)

1 Definition of an nfa

An nfa (non-deterministic finite automaton) is the same as a dfa, except:

� the same label can occur on multiple edges leaving the same vertex. Example 1:

� edges can be labeled with the empty string λ. Example 2:

Note that we are defining nfas informally, via transition graphs. They can be defined more
formally, using transition functions, but we won’t pursue that approach here.

The execution of an nfa is similar to the nondeterministic programs and nondetermin-
istic Turing machines we saw in the previous lecture. If, while consuming an input string,
an nfa finds that it has two possible transitions, it can clone itself and allow each clone
to follow a different transition. For example, in the nfa of Example 1 above, if the first
symbol in the input string is “a”, the nfa immediately clones itself, with one clone entering
state q1 and the other entering state q2. We can imagine the clones continuing to operate
in parallel (“real” multitasking) or taking turns (“fake” multitasking), just as with the
nondeterministic programs and machines in the previous lecture.

Transitions labeled with the empty string λ immediately trigger a cloning operation:
one of the clones stays in the current state, and the other clone follows the λ-transition. For
example, in the nfa of Example 2 above, if the first symbol in the input string is “a”, the
nfa transitions to q1, and then immediately clones itself, with one of the clones following
the transition to q2 and the other remaining at q1.
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2 How does an nfa accept a string?

The definition of acceptance for an nfa is the same as for nondeterministic Turing machines.
Specifically, the nfa

� accepts if any possible path accepts

� rejects if all possible paths reject

Example 3: Consider the nfa of Example 1 above, with input string “ab”. There are
three possible paths compatible with this string: pq0, q2, qtrapq, pq0, q1, q2q, pq0, q1, q3q. (Note
that qtrap is a trap state that isn’t explicitly shown on the transition graph, but is implicitly
the target of any transition that doesn’t have a labelled arrow.) The first two of these paths
end in rejecting states—qtrap and q2. But the third path ends in the accepting state q3,
and this is sufficient for us to declare that the nfa as a whole accepts the string “ab”.

Exercise: Describe the languages accepted by each of the above nfas.

3 Sometimes nfas make things easier

One reason for working with nfas instead of dfas is that they can be simpler, easier, and
more natural. Sometimes, a language is most easily described with a nondeterministic
decision.

Eaxmple 4: Consider the language

L � tan : n is a multiple of 2 or 3u.

Here’s an nfa that accepts L:

Notice how this nfa decomposes naturally into two possibilities: multiples of 2, and multi-
ples of 3. The nfa can choose nondeterministically between the two possibilities, processing
both simultaneously. We will see below that we can also come up with a deterministic finite
automaton that accepts L, but the deterministic version is more difficult to understand.
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4 Equivalence of finite automata

Two or more nfas and/or dfas are equivalent if they accept the same language.
Example 5: The two automata below both accept the language papbcq�dq�, and are

therefore equivalent.

Claim: Every nfa is equivalent to some dfa.

Proof of the claim: This proof is a persuasive sketch, not a formal mathematical
argument. Given an nfa, we construct a dfa whose states consist of subsets of the nfa states.
Transitions between these dfa states are computed by examining all possible transitions in
the original nfa. Initial and final states are computed similarly. The examples below show
how this is done in practice. The key point is that the original nfa has a finite number
of states (say, N), so the constructed dfa also has a finite number of states (at most, the
number of subsets of N elements, which is 2N ). The number of transitions in the nfa is
also finite, so computing any transition in the constructed dfa is just a matter of checking
finitely many transitions in the original nfa. �

Example 6: Let’s convert the nfa of Example 4 above into a dfa.
Step 1: The initial state of the nfa is q0, but because of the λ-transitions out of q0, the

nfa can clone itself and start in any one of the three states tq0, q1, q3u before reading any
characters of input. Therefore, we create an initial state for our dfa, call it s0, and label it
with “0,1,3” to remind us that it represents the subset tq0, q1, q3u:

Step 2: Given that the nfa is in one of the states tq0, q1, q3u, which states could transition
to after reading an a? From q1, it can go to q2; from q3, it can go to q4; and these are the
only possibilities. So we create a new state for our dfa, call it s1, and label it with “2,4”
to remind us that it represents the subset tq2, q4u:

3



Step 3: Consuming another a of input moves us to either q5 or back to q1, giving:

However, there is some additional analysis to be done here. Note that in the original nfa,
q1 is an accepting state, but q5 is not. So, should our new s2, representing the subset
tq1, q5u, be an accepting state or not? The answer lies in the definition of acceptance
for nfas: an nfa accepts a string if any of the possible paths for that string end in an
accepting state. Therefore, we declare a newly-created dfa state to be accepting if any of
the representatives in its corresponding subset are accepting. So in this particular case, s2
is an accepting state.

The remaining steps continue in similar fashion, finally resulting in:

Example 7: On the left below is another nfa. An equivalent dfa, generated by the
algorithm described above, is shown on the right.
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4.1 Practicality of converted nfas

When we convert an nfa into an equivalent dfa, the result is often a compact, practical
dfa that could be used in real computer programs. In principle, however, an nfa with N
states can result in an equivalent dfa of up to 2N states. For large values of N , this kind
of exponentially large dfa is not practical. Therefore, just as with Turing machines, it is
clear that adding nondeterminism to dfas does not change computability, but it does have
an effect on practicality.

It’s worth noting that almost everywhere else in this book, we are equating “practical-
ity” with “reasonable running time”. In the case of dfas and nfas, however, the running
time is always Opnq—the automaton reads each character of the input exactly once, then
halts. So the running time of a dfa is always “reasonable”. In the previous paragraph,
therefore, we instead equated “practicality” with “reasonable size”.

5 Why study nondeterminism?

Why do we study nondeterminism as a theoretical concept? Because any computer system
(even a large data center) can run only a fixed, maximum number of threads simultane-
ously, it might appear foolish to study nondeterministic computations, where there is no
maximum on the number of simultaneous threads. Despite this, there are several good
reasons for studying nondeterminism:

� As shown above (Example 4 with L � tan : n is a multiple of 2 or 3u), it is sometimes
more natural to analyze a problem from a nondeterministic point of view.

� Is sometimes easier to prove results using nondeterministic Turing machines and
automatons. For example, now that we know nfas and dfas recognize the same set
of languages (i.e. regular languages), it is trivial to prove that whenever L is regular,
so is L�. To do this, take the transition graph of a dfa that accepts L, and add a
λ-transition from every accepting state back to the initial state. Also, convert the
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initial state into an accepting state (if it isn’t already). The result is an nfa that
accepts L�.

� To a certain extent, nondeterminism is a reasonable model of how modern computers
work. For example, when you submit a query to a search engine such as Google,
your query may be simultaneously processed by hundreds of computers—this is a
vivid and realistic example of nondeterministic computation in action. On the other
hand, any given computer system (even the entire collection of computers controlled
by Google), can handle only a finite number of simultaneous threads. Therefore, the
theoretical definition of nondeterministic computation, which allows us to create as
many threads as desired, is not completely realistic.

� The theory of nondeterministic computation has led to numerous results in complex-
ity theory that have practical implications. We will be studying some of these later in
the course. But as a preview, consider the fact that large numbers can be factorized
efficiently using a nondeterministic Turing machine, but no one knows how to per-
form factorization efficiently on a deterministic machine. Many modern cryptography
systems depend on the (unproven) assumption that factorization cannot be done ef-
ficiently in practice. Therefore, theoretical results that shed light on the distinction
between deterministic and nondeterministic computation can have implications for
practical applications such as whether or not our cryptography is secure.

6 Summary of nondeterminism

Here are the main facts you should know about nondeterminism:

� Given any nondeterministic Turing machine M , there exists a deterministic Turing
machine M 1 that computes the same function.

� It is widely believed that for certain nondeterministic machines M , the equivalent
deterministic machine M 1 will, in general, take exponentially longer to compute the
function. (For example, it is widely believed that factoring requires exponential
time on a deterministic machine; but factoring requires only polynomial time on a
nondeterministic machine.) However, there is no proof that this exponential blowup
must exist.

� Given any nondeterministic finite automaton A, there exists a deterministic finite
automaton A1 that accepts the same language.

� The number of states in A1 can be exponentially larger than the number of states in
A.
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� There are other models of computation (not studied in this course) where nondeter-
minism does affect computability. For example, there is a type of automaton known
as a push down automaton (pda). The deterministic and nondeterministic versions
of pdas recognize different classes of languages.
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