
COMP 314 Class 19: The complexity class PolyCheck

The motivation for defining complexity classes Poly and Exp is reasonably clear: prob-
lems in Poly are usually “easy” and problems in Exp (but not in Poly) are usually “hard.”
In contrast, there is no such obvious motivation for the next complexity class we will look
at—a class we’ll call PolyCheck. The true motivation behind PolyCheck becomes clear only
after we have seen what we can and cannot prove about the problems in this class. It
will turn out that PolyCheck contains most of the genuinely useful, yet apparently “hard”
problems—the hard problems that crop up in the computational sciences such as mathe-
matics, biology, and engineering. Infuriatingly, however, no one has yet proved that any of
the problems in PolyCheck really is “hard.” But computer scientists believe that by study-
ing this special and peculiar class, PolyCheck, we will one day gain a clearer understanding
of the difference between “hard” and “easy” problems.

Hopefully, this gives you enough motivation to accept the following definitions of Poly-
Check. Let’s start with an extremely informal definition: PolyCheck is the class of problems
for which it might take a long time to compute a solution, but once you have a solution,
it’s easy for a separate computer program to verify that solution quickly. Factor provides
a concrete example of this (see Figure 1 for a formal definition of the problem). As far as
anyone knows, there’s no efficient way of finding the prime factorization of a large num-
ber; the best-known existing algorithms take exponential time. However, once you have
a number’s prime factors, there’s an extremely efficient way of checking that the answer
is correct: simply multiply the alleged factors together, and check the result equals the
original input. Hence, at least according to our initial informal definition, Factor is in
PolyCheck.

Problem Factor

� Input: A positive integer M in decimal notation

� Output: A list of all prime factors of M .

Figure 1: Description of the computational problem Factor.

With this example in mind, we’re ready to tackle a more rigorous definition.
Definition of PolyCheck: A computational problem is in PolyCheck if you can check that
its output is correct in polynomial time (as a function of the input size)—but with two
caveats:

1. (the “hint” caveat) The process of checking the output is allowed to use a hint if
desired, as long as the length of the hint is bounded by a polynomial (as a function
of the input size).

2. (the “no” caveat) If the output happens to be the special value no, the process of
checking the output can take as long as you want.
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Let’s agree to call a problem instance positive if the answer is something other than
“no”. And an instance is negative if its answer is “no”. Then we can reformulate the
definition of PolyCheck yet again: A computational problem is in PolyCheck if you can
verify the output for positive instances in polynomial time, possibly with the help of a
polynomial-sized hint. This definition includes both caveats in a single sentence, since it
restricts to positive instances and mentions the possibility of a hint.

Let’s reassure ourselves that Factor satisfies the formal definition of PolyCheck. The
input is an integer M , which is n decimal digits long, and we know that n � log10M . Now
suppose someone tells us an alleged prime factorization of M , and we want to check that
it really is a prime factorization. How long might it take to do this, in the worst case? To
keep the analysis simple, we will use some very sloppy upper bounds (after all, we only
need a method that is polynomial in n). Firstly, how many factors could M have? The
number of factors will be highest when the value of the factors is lowest, and the lowest
possible value of a non-trivial factor is 2. So the number of factors is at most log2M ,
which is Opnq. So we need to multiply together only Opnq factors. How long could just
one of these multiplications take? Even in the worst case, a factor can’t be longer than
the n digits of the input, and multiplying two n-digit numbers by the näıve gradeschool
method is Opn2q. Thus, we perform Opnq multiplications that take Opn2q time each, for a
total time of Opn3q. Finally, we also need to check each of the factors is actually prime.
But it turns out there’s a polynomial-time algorithm for checking primality. So the entire
checking process takes polynomial time, showing that Factor really is in PolyCheck.

Note that neither of the caveats in the definition applies to Factor. We didn’t need
any hint to check the correctness of the factorization, so the “hint” caveat is irrelevant.
And the problem Factor never outputs the special value no (since its output is always a
list of numbers), so the “no” caveat is irrelevant also.

Let’s now look at some more examples, to understand how the two caveats can come
into play.

The “hint” caveat

The “hint” caveat—that we might need a polynomial-sized hint to help us check the
solution—usually applies when the computational problem has been defined in an arti-
ficially narrow way. For example, considering the following silly variant of Factor:

Problem FactorsEndingIn7

� Input: A positive integer M in decimal notation

� Output: A list of all prime factors of M that end in the digit 7.

FactorsEndingIn7 has no useful applications; we examine it purely to understand why
a hint might be needed to check a solution. To see this, imagine that the input M is a
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10,000-digit number, and the alleged solution which we have to check is 17,47. Of course
it is easy to check that 17 and 47 divide M , so we can efficiently verify this aspect of the
solution. But how do we know the list is complete? It is certainly possible that M has some
other prime factor ending in 7 too—imagine, for example, that there is a 5,000-digit prime
factor of M that ends in 7, and therefore should also have been part of the solution. As
far as anyone knows, it takes exponential time to verify that this 5,000-digit prime factor
doesn’t exist.

Hence, we need a hint. In this case, a good choice for the hint would be a list of all other
prime factors of M . Once we have those, we can check in polynomial time that the list
of prime factors is complete and correct (exactly as we did for Factor above), and then
also verify that none of the other factors ends in 7 (this last check is Opnq, and therefore
certainly polynomial). Finally, note that the hint itself has to be polynomial in length. In
this case, it’s easy to see this: from the analysis of Factor above, we know there are at
most Opnq prime factors, each of length Opnq; so the hint itself is Opn2q (this is a very
sloppy bound, but good enough for our purposes). Thus, by employing the “hint” caveat,
we have proved that FactorsEndingIn7 is in PolyCheck.

Note that we can assume the hint is provided to us for free, perhaps by an omniscient
deity. To prove membership in PolyCheck using the “hint” caveat, it only matters that a
suitable hint exists. It does not matter whether you could feasibly compute the hint. On
the other hand, once we’re given a hint, we do have to check that it really works. For
example, we had to check that the allegedly prime factors in the hint above really were
prime. You can’t trust that the deity is telling the truth—everything has to be verified!

Do we really need the “hint” caveat?

Until you get used to it, the “hint” caveat makes the definition of PolyCheck somewhat
messy and annoying to deal with. It’s reasonable to ask if we really need this caveat
at all—especially since the only example we have seen of a problem that needs a hint
(FactorsEndingIn7) is a contrived and artificial one. The short answer is: yes, we do
need the “hint” caveat—especially when dealing with decision problems, which are the
traditional focus of complexity theory. Recall that the output of a decision problem is
either yes or no. Suppose a sophisticated computer program analyzes a difficult problem
for a long time and then outputs yes. To show membership in PolyCheck, our job is to
efficiently check that the output is correct. But how can we do this, based only on a single
bit of information (“yes”), without rerunning the whole computation? What we need is
some kind of easily-checkable justification for why the output was yes. And this is exactly
what a hint can provide. Let’s stick with our example of factoring, to see this in action.
A traditional text on complexity theory might present factoring as the following decision
problem:

3



Problem FactorDecision

� Input: Three positive integers M,a, b in decimal notation

� Output: yes if M has a prime factor in the interval ra, bs, otherwise no.

The first thing to note is that this is a perfectly reasonable reformulation of Factor as a
decision problem. Given a computer program FD that solves FactorDecision, we can
use FD as a subroutine in another program F that solves Factor: by repeatedly calling
FD with suitable values of a and b, we can use binary search to pin down the values of
the factors one by one. And it’s not hard to see that if FD runs in polynomial time,
then so does F . So in some sense, the decision version of the problem captures all of the
intrinsic difficulty of the full version: FactorDecision has an efficient solution if and only
if Factor does.

Because the two problems have the same intrinsic difficulty, it seems sensible to define
our complexity classes so that both problems are in the same classes. But if we didn’t
allow the “hint” caveat in our definition of PolyCheck, we would have the absurd situation
of being able to prove that Factor is in PolyCheck, but not being able to prove the same
thing for FactorDecision.

To check our understanding, let’s now use the “hint” caveat to prove that FactorDe-
cision does in fact belong to PolyCheck.

Claim: FactorDecision is in PolyCheck.

Proof of the claim: Suppose we’ve been given the inputs M,a, b (with total length n),
and program FD has output yes on these inputs. We need to check that yes is the right
answer, in polynomial time, and using a polynomial-sized hint. Hopefully, the necessary
hint is obvious: we just need to know the value of the prime factor found by FD—let’s call
it K. The length of K is less than n, so the hint is of polynomial size, as required. We
then need to check that (i) K is really a factor of M (use division for this); (ii) a ¤ K ¤ b;
and (iii) K is prime. Each of these checks is polynomial in n, and hence FactorDecision
is in PolyCheck. �

The “no” caveat

Now we turn to the second wrinkle in the definition of PolyCheck: the “no” caveat, which
says that a problem can be in PolyCheck even if there is no efficient way of checking its no
answers.

An informal reformulation of this is as follows. We can think of a problem in PolyCheck
as being a search for a correct solution among a vast space of possible solutions. Although
it’s a tired cliché, this really is just like searching for a needle in a haystack. Think of
searching for the factors of a 10,000-digit number: each factor is a needle, and each non-
factor is a piece of hay. In this example, there are far more pieces of hay than atoms in
the observable universe.
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Pushing our cliché a little further, we could say that a problem is in PolyCheck if there
is an efficient way of verifying needles: at a glance, we need to be able to say “yes, that’s
a needle, it’s definitely not a piece of hay.” This is where the “no” caveat comes in: if no
needle is found, efficient verification isn’t required. More specifically, suppose a computer
program that solves a PolyCheck problem produces the output, “no, there are no needles
anywhere in this haystack.” Then it’s okay to verify this output by painstakingly going
through the haystack until we’re sure that no needle is present.

You may not have noticed, but we actually used the “no” caveat in our last proof. Your
job is to explain exactly where and how:

Compulsory exercise 1. Explain where and how the “no” caveat was used in the proof
of the claim that FactorDecision is in PolyCheck, on page 4.

I should be completely honest and admit that this is actually a bad example of the “no”
caveat. I included it anyway because we are already familiar with the FactorDecision
problem, and have invested some effort in analyzing it. But it turns out that—if we’re
given the right hint—we can efficiently verify no outputs from FactorDecision. The
hint we need is the same as for yes outputs: the entire prime factorization of input M . As
discussed earlier (page 3), this hint is polynomial in length. And it’s trivial to check that
none of the prime factors lies in the range ra, bs specified in the input. So we can verify
the no output in polynomial time, and hence we didn’t need to take advantage of the “no”
caveat.

So let’s instead look at a good example of the “no” caveat. For this, we’ll need the
Packing problem defined in Figure 2. Informally, we are given a bunch of packages with
weights, and we want to load them onto a delivery truck that needs at least weight L
to make a delivery worthwhile, and can carry at most a total weight H. If this can’t be
done, the output is no. Otherwise, the output is a list of which packages can be used to
produce a feasible packing of the truck. It’s extremely easy to prove that Packing is in
PolyCheck—try to do this on your own:

Compulsory exercise 2. Prove that Packing is in PolyCheck. Note that you won’t need
the “hint” caveat in the definition of PolyCheck, but you will need the “no” caveat.

Solutions to compulsory exercises

1. The “no” caveat was used in the first sentence of the proof on page 4. Specifically,
we assume that the program FD has output yes, and go on to explain an efficient way
of verifying this output. But we didn’t consider the possibility that FD had output no,
because the “no” caveat in the definition of PolyCheck guarantees we don’t have to. Of
course, FD frequently does output no, and it must be correct when it does so—but we
don’t need an efficient way of verifying this correctness.
2. To prove that Packing is in PolyCheck, we need to show that any answer—except a “no”
answer—can be verified in polynomial time (possibly with the help of a polynomial-sized
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Problem Packing

� Input:

– A list of positive integers in decimal notation separated by whitespace. For exam-
ple, this part of the input could be 12 4 6 24 4 16. These integers are called
the weights; we think of them as the weights are some objects to be loaded into
a delivery truck. Denote the weights by w1, w2, . . . wm, where m is the number
of weights.

– Two integer thresholds L and H, also in decimal notation. The L stands for Low
and H for H igh. We think of L as the minimum weight that makes it worthwhile
for the truck to make a delivery, and H as the maximum weight that the delivery
truck can carry. As a specific example, let’s take L � 20 and H � 27.

� Output: A feasible packing is a subset of the input weights whose total weight W lies
between the low and high thresholds: L ¤ W ¤ H. If no feasible packing exists,
output no. Otherwise, output a subset S of the weights that represents a feasible
packing. For the above example, one correct output is 2 3 6. This means that a
feasible packing of the truck is achieved by loading objects 2, 3, and 6. The total
weight is therefore W � w2 � w3 � w6 � 4 � 6 � 16 � 26, and L ¤ 26 ¤ H, as
required.

Figure 2: Description of the computational problem Packing. The decision version of this
problem is known as SubsetSum.

hint). In this case, a positive answer consists of some indices, specifying which packages
should be loaded onto the truck. So, we just need to add up the specified weights and
check that the sum is between L and H. Each of these operations requires at most Opnq
time, where n is the length of the input. So the positive answer can be verified in linear
time, which is certainly polynomial. For a negative answer, on the other hand, we seem to
be stuck: there is no obvious way of verifying that the truck can’t be loaded, other than
trying all possible subsets of the input integers—and this will take exponential time. But
fortunately, the “no” caveat tells us this doesn’t matter, so we have completed the proof
that Packing is in PolyCheck.
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