COMP 314 Class 20: PolyCheck and NPoly are identical

Recall the definitions of complexity classes PolyCheck and NPoly:

e PolyCheck: problems whose positive instances can be verified in polynomial time
(using a polynomial-sized hint, if needed).

e NPoly: problems that can be solved in polynomial time by a nondeterministic pro-
gram.

At first sight, these two definitions appear to rely on completely different properties.
Remarkably, we will now prove that the two definitions define exactly the same complexity
class:

Claim: PolyCheck and NPoly are identical. That is, any problem in PolyCheck is also in
NPoly, and vice versa.

We will split the proof into the obvious two parts, and devote a separate section to
each. The next section shows that PolyCheck is a subset of NPoly; the section after that
shows that NPoly is a subset of PolyCheck.

1 Every PolyCheck problem is in NPoly

In this section, we will be proving
Claim: Every PolyCheck problem is in NPoly.

Proof of the claim: Let F' be a problem in PolyCheck. Given an input I of length
n, let S(I) to denote a proposed solution to F. The solution is “proposed” because it
still needs to be verified. We know the length of the solution S(I) is bounded by some
polynomial—say, a(n). (Why? We know it’s possible to verify the correctness of the output
in polynomial time, so the output itself had better have polynomial length—otherwise we
couldn’t even read it in polynomial time.)

By the definition of PolyCheck, we might need a hint H(I) before we can verify the
output S(I). We know the length of this hint is bounded by some polynomial—say, b(n).
(Why? The polynomial length of the hint is guaranteed directly in the definition of Poly-
Check. Note that some PolyCheck problems don’t need any hint, but that just means we
can take b(n) = 0, which is a perfectly good polynomial.)

Also by the definition of PolyCheck, we know there exists some Python program verify.py,
which can take as input the strings S(I) and H(I) concatenated together, and will output
“yes” if and only if the alleged value of S(I) is correct. And we know that verify.py will
run in polynomial time, unless S(I) = “no”. Let’s say the running time of verify.py is
bounded by a polynomial ¢(n), for positive instances.

Now we are going to use these building blocks to write a nondeterministic Python
program guessAndVerify.py that computes a solution to F' in polynomial time. The

program itself is shown below, beginning on page 3. The program might look intimidating,
but the underlying idea is reasonably simple. We just use the power of nondeterminism
to guess the solution (and the hint). The number of possibilities is ludicrously large: if
there are A symbols in the alphabet, then there are A*™ possible solutions, and A"™)
possible hints. This makes a total of A*™+0(") combined possibilities. However, through
the power of nondeterminism, we can try all of these possibilities is simultaneously. Any
single thread in this computation just has to make a(n) + b(n) choices (each choice selects
one of the A possible symbols) for its guess of the solution and hint. Then, the guess needs
to be verified, which takes time ¢(n). So the total time needed by any one thread is at
most the polynomial a(n) + b(n) + c¢(n).]

To understand the details, read through the listing of guessAndVerify.py on page 3.
You can also look at the listing of a particular example of the verify.py program, on
page 6. This verification program is used to find a single factor of the input. The input,
solution, and hint are all expressed as binary strings. For example, one possible solution
to the input “110” (decimal 6) is “10” (decimal 2). Of course, this simple example doesn’t
require a hint, since we can easily verify the solution by checking that 2 divides 6. To
make the example more interesting—and in particular, to demonstrate how the hint can
be used—this particular example assumes we are in a strange universe where division oper-
ations are extremely expensive, and we therefore only want to use multiplication operations
in the verification program. So, if the input is 6 and the proposed solution is 2, the hint
will be 3, and the verification program can check that 2 x 3 = 6. In general, for input
M and proposed solution K, the hint will be L = M/K, and the program checks that
KxL=M.

S

oo

10

12

14

16

18

20

22

24

26

28

30

3

[N

34

36

38

4

o

Python program guessAndVerify.py

we need facilities in the threading and time modules
import threading
import time

We assume a function to verify a solution, possibly given a hint, is
provided, and import it here. The function

verify(input,solnAndHint) takes two parameters and returns True or
False. The second parameter is a string containing both the solution
and, optionally, the hint. The hint, if present, is separated from

the solution by a semicolon. Example: verify(”abc”, "xy;123”) should
return True if "zy” is the solution to input "abc”, verified using

the hint 7123”.

from verify import verify

a(n) is the known polynomial bound on the length of the solution.
As a concrete example, we assume here the solution is shorter than
the input.

def a(n):

return n—1

b(n) is the known polynomial bound on the length of the hint. As a
concrete example, we assume here the hint is shorter than the

input.

def b(n):

return n—1

Fxcept for very tiny problems, this program will create a vast

number of threads —— too many for Python’s threading module to cope
with. Therefore, it’s preferable to simulate the nondeterminism

using recursive function calls instead. To use actual threads, set

the following variable to False, but you will need to use very short

inputs, and very small polynomials a and b above.
useRecursionToSimulateNondeterminism = True

In principle, this program works with any alphabet. In practice,

since we will be guessing all possible solutions and hints up to a

qiven length, we need to keep the alphabet small so that the number
of possibilities is manageable. Hence, we restrict to binary strings

42

4

IS

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

involving 0’ and ’1’°, but we also permit the semicolon since it

will be used as a separator between solution and hint when they are
concatenated.

alphabet = [707, 717, ;]

nondetGuessAndVerify nondeterministically guesses and verifies all
possible solutions and hints that start with the given string
solnAndHintGuess. If a correct solution is found, the global
variable answer is updated with the solution.
def nondetGuessAndVerify(input, solnAndHintGuess):
By assumption, the solution has length at most a(n), and the
hint has length at most b(n), so when we concatenate them with a
semicolon separator, the total length of the guess is at most
a(n) + b(n) + 1. Hence, we can immediately give up and return if
our current guess is longer than that.
n = len(input)
if len(solnAndHintGuess) > a(n) + b(n) + 1:
return

Try all possible extensions of the current guess. That is,
append each possible symbol to the current guess, and launch new
threads to analyze each of these possibilities.
for symbol in alphabet:
append the chosen symbol to previous guess
newGuess = solnAndHintGuess + symbol
As noted above, the number of threads becomes
overwhelming except in trivial examples, so we can
sitmulate nondeterminism with a recursive function call
if desired.
if useRecursionToSimulateNondeterminism:
nondetGuessAnd Verify (input, newGuess)
else:
t = threading. Thread(target=nondet GuessAnd Verify, \
args = (input, newGuess))
t.start()

Now we use the verify function to find out if our current guess
is correct. This takes at most time c(n).
foundSolution = verify(input, solnAndHintGuess)

82

84

86

88

90

92

94

96

98

100

102

104

106

108

110

112

114

116

118

If we have guessed a correct solution, update the global
variable answer.
if foundSolution:
global answer
The solution consists of the part of solnAndHintGuess before
the semicolon, if one is present.
answer = solnAndHintGuess.split(’ ; ?)[0]

gquessAndVerify is the driver function that will launch our
nondeterministic version of the same function, nondetGuessAndVerify.
def guessAndVerify(input):

Initialize the global variable answer to 'no’. If any of the

threads finds a solution, it will store the solution in this

variable.

global answer

answer = ’no’

Our initial guess for the solution, and the hint, consists of
the empty string.
solnAndHintGuess = *?

Launch the nondeterministic computation
nondetGuessAnd Verify (input, solnAndHintGuess)

If we are using real threads (i.e. not simulating them via
recursion), we had better wait until they have all finished.
if not useRecursionToSimulateNondeterminism:
while threading.activeCount() > 1:
time.sleep(1)

Return the answer
return answer

Here’s an example of the entire program in action
solution = guessAndVerify(*1110?)
print solution

S

(=]

oo

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

Python program verify.py

This function returns true if the proposed solution is correct for
the given input. The solution can be computed using a hint. The
solution and hint are concatenated into a single string parameter,
solnAndHint, separated by a semicolon. In this particular function,
we are verifying that the solution is a factor of the input (when
both are interpreted as binary strings). To make the hint
meaningful, we are pretending that division is too expensive, so the
wverification can use only multiplication. Thus, if the input is 1111’
(decimal 15), one possible solution is 101’ (decimal 5), in which
case the hint should be '11° (decimal 3) —— so that we can verify
the solution by computing 5¥3==15.
def verify(input, solnAndHint):

Our verification strategy requires a hint, so return False if

the hint separator (’;’) is not present.

if solnAndHint.count(?;?) != 1:

return False

Split the solution and hint into separate strings, and return
False if either is empty.
strings = solnAndHint.split(’ ;)
solution = strings[0]
hint = strings|[1]
if len(solution)==0 or len(hint)==0:
return False

Convert the binary strings into integer values.
inputVal = int(input, 2)

solutionVal = int(solution, 2)

hintVal = int(hint, 2)

Verify that solutionVal * hintVal == inputVal. We also need to
rule out the trivial solutions (1, and the input value).

if solutionVal>1 and solutionVal<inputVal and solutionVal % hintVal == inputVal:

return True
else:
return False

[

M

2 Every NPoly problem is in PolyCheck

In this section, we will be proving
Claim: Every NPoly problem is in PolyCheck.

Proof of the claim: Let F be a problem in NPoly. That means there is a nondeter-
ministic program P computing solutions to F' in polynomial time. When P runs, we can
imagine a tree of the threads it creates, as in Figure 1. Each node in this tree can number
its children 0, 1, 2, 3, and so on. If we are given a positive instance of the problem, then
at least one of the leaves of the tree represents a valid solution. (Leaves are shown as open
circles in Figure 1.) There is some path from the root of the tree to this solution leaf,
and we can identify that path by the numerical IDs of each node to pass through. For
example, the path could be described by the sequence 2, 2, 4. This sequence of choices
is precisely the hint that will be fed into our verifying program. Note that the length of
the hint is a polynomial function of the input length, since any path from the root to a
leaf takes polynomial time. So, the verification program is just a deterministic version of
P: instead of launching new threads, it chooses exactly what to do next according to the
hint it has been given. When it reaches the leaf, it can compare the solution there to the
alleged solution it is meant to be verifying.

The total running time is polynomial since every path in the original, nondeterministic
computation had polynomial running time.]

We can add a little more detail to the above proof by thinking about what changes
would need to be made to the code. Specifically, we can assume that any part of the
nondeterministic program P that launches new threads looks something like this:

treeDepth = treeDepth + 1
for nondetChoice in range(numChoices):
t = threading. Thread(target=someFunction, \
args = (input, treeDepth, nondetChoice, someOtherParameters))
t.start()

In the verification program, we change this code to:

treeDepth = treeDepth + 1
nondetChoice = hint[treeDepth]
someFunction(input, treeDepth, nondetChoice, someOtherParameters)

O /112 O/ O/ /Z12\3\d 0O 0O \1\2

Figure 1: A tree representing the threads launched by a nondeterministic program. Leaves
are represented by unfilled circles.

