
COMP 314 Class 23: P=NP, and a first look at
NP-completeness

1 The complexity classes P and NP

We’ve now spent a lot of time thinking about the complexity classes Poly and PolyCheck/N-
Poly. (I’ll occasionally use the cumbersome description “PolyCheck/NPoly” to emphasize
the fact that PolyCheck and NPoly are exactly the same class.) The computational prob-
lems in these complexity classes are mathematical functions that accept an ASCII string
as input and produce another ASCII string as output. If we restrict attention to decision
problems only—that is, functions that accept an ASCII string as input and produce either
“yes” or “no” as output—we get the world’s two most famous complexity classes: P and
NP. Formally:

� P is the set of all decision problems in Poly.

� NP is the set of all decision problems in PolyCheck/NPoly.

All of the problems we’ve discussed so far can be altered in obvious ways to produce
decision problems. For example, the decision version of HamiltonianCircuit outputs
“yes” if a Hamiltonian circuit exists, and “no” otherwise. In the rest of the course, we
won’t usually bother to distinguish between general problems and their decision variants—
the context should make it clear whether or not we are restricting to decision problems. In
the rare cases where ambiguity could arise, we will use problem names like Hamiltonian-
CircuitGen (for the general problem) and HamiltonianCircuitDec (for the decision
variant).

Note that the decision variants of all of our favorite PolyCheck problems are in NP.
This includes Factor, TravelingSalesperson, SubsetSum, and HamiltonianCir-
cuit. (Defining a decision version of Factor requires a little more care, as described in
Class 20.) For each of these problems, we can verify “yes” answers in polynomial time by
using the full solution (i.e. the solution to the general, non-decision variant) as a hint.

2 P=NP

Why are P and NP the world’s most famous complexity classes? Because they feature in
the most famous unsolved mystery in computer science—a mystery known as “P=NP?”.
A formal statement of this problem is:

P=NP?
(version 1)

Are P and NP the same complexity class? That is, do they each contain the same set of
computational problems?

1



We have already seen that two apparently different complexity classes (PolyCheck and
NPoly), defined in completely different ways, turned out to be identical. So even though
the definitions of P and NP are different, it’s not completely unreasonable to wonder if
they are equivalent.

It’s obvious that P is a subset of NP. Why? Any decision problem D in P can be
solved by some deterministic polytime Python program, say D.py. But a deterministic
program is just a special case of a nondeterministic one—it’s a “multithreaded” program
that uses only one thread. So D.py can also be regarded as a nondeterministic polytime
program that solves D, and hence D is in NP. So P is a subset of NP, and we can therefore
reformulate the P=NP question as:

P=NP?
(version 2)

Is there any decision problem D that lies outside P but inside NP?

Note that finding even one problem D that’s in NP but not in P would resolve the whole
P=NP question. As I write these words, computer scientists have catalogued thousands of
problems that are (i) known to be in NP, and (ii) generally believed to be outside P. But
not one of these problems has been proved to lie outside P.

Yet another way of looking at this is to think about converting nondeterministic pro-
grams into deterministic ones. If P=NP, then it must be possible to convert any polytime,
nondeterministic program ND.py into a polytime, deterministic program D.py that com-
putes the same answers. Defining programs to be equivalent if they produce the same
answers on the same inputs, we can again reformulate the P=NP question:

P=NP?
(version 3)

Is it always possible to convert a polytime, nondeterministic program into an equivalent
polytime, deterministic program?

By definition, a polytime nondeterministic program launches a tree of threads like the
one in Figure 1. Each leaf of the tree corresponds to a potential solution. The depth of
the tree is bounded by a polynomial (because every thread finishes in polynomial time).
But the width of the bottom layer of tree could be exponential (because the number of
threads can grow by a constant factor at each layer). The nondeterministic program can
check all the leaves (i.e. the potential solutions) in parallel, and return any successful result.
Therefore, the notion of converting a nondeterministic program into a deterministic one is
roughly equivalent to finding a deterministic method of evaluating all the leaves. It is, of
course, possible to do this: we just examine the leaves one by one. But this could take an
extraordinarily long time, since the number of leaves can be exponential as a function of
the input size. So the real question is, can we check the leaves in polynomial time? This
results in our fourth reformulation of P=NP?:

2



0

4

321

0 0 01 1 12 3

0 0 0 0 01 1 12 2 23

Figure 1: A tree representing the threads launched by a nondeterministic program. Leaves
are represented by unfilled circles.

P=NP?
(version 4—informal)

Is it always possible to search the leaves of a tree in polynomial time?

This version of the P=NP question is labeled “informal”, because it uses concepts that
are not defined rigorously. But it captures the spirit of the question quite nicely. Problems
in NP can always be solved by examining exponentially-many leaves in a tree. Problems
in P can always be solved by some other, faster technique. A program that actually visits
every leaf must take exponential time, and therefore a polytime program cannot visit every
leaf. Instead, it somehow searches the whole tree by cleverly ignoring the vast majority
of possible solutions, and focusing on a tiny, polynomial-sized minority of the possible
solutions. This is what we mean by “search the leaves of a tree” in version 4 of the P=NP
question above.

3 NP-completeness

Recall that in the previous lecture, we proved that UndirectedHamiltonianCircuit
(Uhc) polyreduces to DirectedHamiltonianCircuit (Dhc), and vice versa. In sym-
bols, we have Uhc ¤Poly Dhc and Dhc ¤Poly Chc. We can write this more succinctly as

3



Uhc �Poly Dhc, and say that Uhc and Dhc are poly-equivalent. The formal definition
should be obvious:

Problems P and Q are poly-equivalent (written P �Poly Q) if P ¤Poly Q and
Q ¤Poly P .

Roughly speaking, poly-equivalent problems are “equally hard”. More precisely, their
solutions have the same running times, if we ignore polynomial factors.

Thus, Uhc and Dhc either rise together or fall together: either both can be solved in
polynomial time, or neither can. In the last lecture, we also saw that CircuitSat �Poly

Sat �Poly 3-Sat. So these three problems also rise or fall together: either all can be solved
in polynomial time, or none can. And in fact, although we have not yet proved it, it turns
out that we can do polynomial time reductions between Sat, Uhc, and Dhc too. So all
five problems rise or fall together:

CircuitSat �Poly Sat �Poly 3-Sat �Poly Uhc �Poly Dhc

Over the last few decades, computer scientists have identified thousands of other problems
that are poly-equivalent to these five problems. These problems are called NP-complete
problems, and the set of all such problems is a complexity class that we’ll refer to as
NPComplete. (Note: In the regular font, the word “NP-complete” is an adjective, as in
the statement “Sat is NP-complete”. In a sans-serif font, the word “NPComplete” is a
complexity class, as in the statement “Sat is a member of NPComplete”.)

The NP-complete problems all rise together, or fall together: either all can be solved in
polynomial time, or none can. But NP-complete problems have an even more extraordinary
property: the NP-complete problems are the “hardest” problems in NP. That is, given any
decision problem D in NP, and any problem C in NPComplete, there’s a polynomial time
reduction from D to C. We will see a sketch proof of this amazing fact in the next lecture.
Until then, let’s take it on faith, and write it out in more formal detail:

Fact (to be proved in the next lecture):
For all D P NP and C P NPComplete, we have D ¤Poly C.

Actually, the above property is usually used to define NP-completeness in the first
place. Here is the classical, formal definition:

Definition 1 of NP-complete (the “ridiculously difficult” definition):
Let Q be a problem in NP. We say Q is NP-complete if, for all D in NP,
D ¤Poly C.

This definition has a strange disadvantage: the requirement of having to find a polyre-
duction from any conceivable problem D in NP seems ridiculously difficult, so you might be
tempted to think there are no NP-complete problems. Fortunately, back in the 1970s, two

4



computer scientists (Stephen Cook and Leonid Levin) achieved this “ridiculously difficult”
goal: they each found a Q to which any other problem in NP can be polyreduced. And
once you have a single Q that fits the definition of NP-completeness, you can spread the
NP-completeness to other problems by a much easier method.

For example, suppose we have managed to prove, as Stephen Cook did in 1971, that
Sat is NP-complete according to Definition 1 above. That is, Cook tells us that

For all D P NP, D ¤Poly Sat (1)

But we already know that
Sat ¤Poly CircuitSat. (2)

(We proved this in the previous lecture.) Chaining together equations (3) and (2), we
conclude that

For all D P NP, D ¤Poly CircuitSat. (3)

In other words, CircuitSat also satisfies the (“ridiculously difficult”) Definition 1 for
NP-completeness.

In general, to show that a problem Q is NP-complete, we just need to find some other
problem C that is already known to be NP-complete, and give a polytime reduction from
C to Q. This works because we can chain together two equations like (3) and (2), with C
and Q in place of Sat and CircuitSat.

Hence, because the really hard work was done for us in the early 1970s, we can adopt
the following equivalent—but much more convenient—definition of NP-completeness:

Definition 2 of NP-complete: (easier)
Let Q be a problem in NP. We say Q is NP-complete if Sat ¤Poly Q.

And there’s nothing special about the use of Sat in this definition—Sat just happens to
be the problem that Stephen Cook first proved NP-complete. This gives us an even more
convenient definition:

Definition 3 of NP-complete: (even easier)
Let Q be a problem in NP. We say Q is NP-complete if C ¤Poly Q, for some
problem C that is already known to be NP-complete.

Finally, it’s obvious that any NP-complete problem (according to any of the above
equivalent definitions) can be polyreduced to any other NP-complete problem—this follows
from Definition 1. In other words, the NP-complete problems are all poly-equivalent to
each other, and this leads to one more way of defining them:

Definition 4 of NP-complete: (via poly-equivalence)
A problem is NP-complete if it is poly-equivalent to Sat, or to any other prob-
lem that is already known to be NP-complete.

5



4 Reformulations of “P=NP?” using NP-completeness

So, now we know that NP-complete problems like Sat are the “hardest” problems in
NP. This fact has some remarkable consequences. For example, if someone invented a
polynomial time algorithm for Sat, it would immediately yield polynomial time algorithms
for every other problem in NP. (Why? Because all those other problems are “easier” than
Sat. More formally, the other problems P all polyreduce to Sat, so we can transform an
instance of P to an instance of Sat in polynomial time, and then solve the Sat instance
in polynomial time.) This gives us yet another way of asking “P=NP?”:

P=NP?
(version 5)

Is Sat in P?

And finally, there’s nothing special about Sat in version 5 of “P=NP?” above. We know
that all the NP-complete problems are poly-equivalent, so “P=NP?” can be reformulated
yet again as:

P=NP?
(version 6)

Is any NP-complete problem in P?

5 NP-hardness

Informally, a problem is NP-hard if it is at least as hard as the NP-complete problems. For-
mally, problem Q is NP-hard if there exists some NP-complete problem P with P ¤Poly Q.
We also define the complexity class NPHard as the set of all NP-hard problems. Obviously,
NPComplete � NPHard. But the converse does not hold: it’s easy to come up with problems
that are NP-hard but not NP-complete. This is because all NP-complete problems are, by
definition, decision problems. Therefore, the general, non-decision variants of NP-complete
problems are NP-hard but not NP-complete. As specific examples, the general variants of
Sat and TravelingSalesperson are NP-hard but not NP-complete.

But these examples are a little unsatisfying. Instinctively, we feel that the general and
decision variants of Sat and TravelingSalesperson are equally hard. Are there more
interesting examples of problems that are NP-hard but not NP-complete? Specifically, are
there problems that are strictly harder than NP-complete problems? The answer is yes, and
we can fall back on our knowledge of computability to find examples—it seems obvious that
uncomputable and undecidable problems are strictly harder than NP-complete problems,
and this is indeed true.

For a specific example, think back to the problem YesOnSomeInput, which takes a
program P.py as input and outputs “yes” if and only if P.py outputs “yes” on at least

6



one input. We will now prove:

Claim: YesOnSomeInput is NP-hard.

Proof of the claim: We will reduce Sat to YesOnSomeInput. Given an instance of
Sat, with k Boolean variables x1, x2, . . . , xk write a program EvaluateSat.py that takes
as input a string of k 1s and 0s, indicating the values of the xi. The output is “yes” if
the Boolean formula is true for the given values of the xi. It’s reasonably obvious that
EvaluateSat.py can be constructed in polynomial time, and we won’t investigate the
details of that here. But now we can ask the question: does EvaluateSat.py return “yes”
on some input? If so, we have found a satisfying assignment to the Boolean formula, so the
answer to our instance of Sat is also “yes”. Hence, sending EvaluateSat.py as the input
to YesOnSomeInput completes the polytime reduction from Sat to YesOnSomeInput.
�

6 Consequences of P=NP

See the Fortnow reading.

7


