COMP 314 Class 24: NP-complete problems

1 CircuitSat is a “hardest” NP problem

Last time we saw several equivalent definitions for NP-completeness. The easiest definition
is to start with a laundry list of famous poly-equivalent problems (e.g. HAMILTONIAN-
CircUIT, CIRCUITSAT, TRAVELINGSALESPERSON, SUBSETSUM), and define them to be
NP-complete. Then declare that any other problem that is poly-equivalent to a previously-
known NP-complete problem is also NP-complete.

If we adopt this easy definition, we miss out on one of the important properties of
NP-completeness: the NP-complete problems are the “hardest” problems in NP. That is,
any NP problem can be poly-reduced to any NP-complete problem. We are now going to
sketch a proof of this amazing fact, by reducing an arbitrary NP problem to CIRCUITSAT.

Claim: Let D be a problem in NP. Then there is a polytime reduction from D to
CIRCUITSAT.

Proof of the claim: D is in NP, so we can verify its solutions in polynomial time.
Specifically, there is a program verifyD.py that accepts, as input, the concatenation of
an input string I, and hint H. The length of H and the running time of verifyD.py are
bounded by polynomials (as a function of n, the length of I). Denote these polynomials
by b(n) and c¢(n), respectively. In this course, we usually work with ASCII inputs and
outputs, but in this proof it will be easier to work with binary. So I and H are binary
strings, and the output is a single bit (1 for “yes, I has been verified as a positive instance
of D”, 0 for “no, we failed to verify that I is a positive instance of D”).

It’s worth clarifying something before moving on. Usually, for NPoly/PolyCheck prob-
lems, the verification program would receive the concatenation of three strings: input
string I, solution S, and hint H. But in this proof, the solution S does not appear. Why?
Because D is a decision problem, so its solution is always “yes” or “no”. And because of
the “no” caveat in the definition of PolyCheck, we only required to efficiently verify positive
instances. Therefore, we can assume S is “yes”, so it doesn’t have to appear as one of the
inputs to verifyD.py.

Let’s get back to the main proof. We are trying to reduce D to CIRCUITSAT. As a
first step, we will convert verifyD.py into a circuit C'. Programs run on computers, and
computers are made up of circuits, so this seems quite reasonable (although there are many
details to be worked out). The circuit will have n inputs for I, b(n) inputs for H, and a
single binary output. Let’s label the inputs 1,49, ... for the I-values and h1, hso, ... for the
H-values.

Now we have a circuit C is that mimics verifyD.py: by feeding the bits from I and
H into the top of the circuit, we obtain an output bit at the bottom equal to the output
of verifyD.py.



Again, recall our main objective: reduce D to CIRCUITSAT. Given an instance of D
(that is, an input I'), we need to convert I to an instance of CIRCUITSAT. Here’s how we do
it. Given I, first construct the circuit C' described above. Then modify C' to create a new
circuit C’, by fixing the values of i1, 42, ... to the specific values of the binary string I. The
new circuit has b(n) inputs labeled hq, hs,.... Now we ask the following question about
C’: “Are there any possible values of the inputs hy, ha, ... that produce an output of 1?”
This question is an instance of CIRCUITSAT! And the answer is “yes” if and only if there
is some hint H that causes verifyD.py to output a 1. This result maps perfectly onto our
original problem D:

Input [ is a positive instance of D
if and only if
There exists some hint H for which verifyD.py outputs 1
if and only if
(' is a positive instance of CIRCUITSAT

Thus, we certainly have a reduction from D to CIRCUITSAT. But the proof is incomplete:
we haven’t yet shown that the reduction can be performed in polynomial time. We won’t
give a rigorous proof of this, but the key point is that the number of gates in the circuit C
needs to be bounded by a polynomial, as a function of n. If that’s true, we can construct
the circuit C, and thus C’, in polynomial time. So the description of C’—which is our
instance of CIRCUITSAT—will have polynomial size.

Well, how large could C actually be? One way to convince yourself that the size
remains reasonable is to think about converting each of the elementary constructs of a
programming language into a small piece of circuitry. Most statements (for example,
if...else statements) require only a fixed number of gates. The main exception to this
is loops (such as while loops). Fortunately, the ¢(n) bound on verifyD.py’s running time
comes to the rescue in this case. The circuitry for the body of the loop can be repeated as
many times as necessary, cutting off after ¢(n) repeats. (This technique, which is also used
by compilers, is called unrolling the loop.) Thus, although the details are omitted here,
it can be shown that C' does indeed have polynomial size, and the polytime reduction is
therefore complete. ]

So, this claim tells us that for any NP problem D, we have D <p,, CIRCUITSAT.
In other words, when we ignore polynomial factors, CIRCUITSAT is at least as hard as
any other NP problem. And because—by our “easy” definition of NP-completeness—all
the NP-complete problems are poly-equivalent to CIRCUITSAT, this means that any NP-
complete problem is a “hardest” NP problem.



2 Some more NP-complete problems

To give us a better taste of the phenomenon of NP-completeness, below is a list of a
few more NP-complete problems, with very brief descriptions. In many cases, the prob-
lem is described as an optimization problem (e.g. find the biggest clique, or minimize the
distance), because the problem is most naturally stated that way. Obviously, these op-
timization problems are not NP-complete—they’'re not even in NP, because they’re not
decision problems. Instead, the optimization problems listed are NP-hard, and in each
case there’s a closely-related variant that is a decision problem and s NP-complete.

e CLIQUE: Find the biggest clique in a graph. (A clique is a set of vertices that are all
connected to each other.)

¢ VERTEXCOVER: Find the smallest set of vertices in a graph that “covers” all the
edges—that is, each edge is connected to one of the chosen vertices.

o MAXCuT: Divide the nodes of a weighted graph into two subsets so that the total
weight of the edges from one subset to the other is as big as possible.

e LONGESTPATH: Find the longest (non-repeating) path in a weighted graph.

¢ INTEGERPROGRAMMING: Find an optimal solution to a set of linear equations and
inequalities, where all the variables are constrained to be integers.

e TASKASSIGNMENT: Given a set of jobs that take different amounts of time, and
some workers (say, people or computers), assign each job to a worker so all jobs are
completed as soon as possible.

3 Problems in NP but probably not NP-complete

Sometimes the rhetoric about NP-completeness starts to sound a little overwhelming. Is it
really true that all the hard, important problems are NP-complete? The answer is widely
believed (but not proven) to be “no”. Here are some problems in NP that have important
applications, have been studied intensively, appear to require exponential time, but have
never been proven NP-complete:

e FACTOR: Compute the prime factorization of an integer.
e DISCRETELOG: Compute log;, N using clock arithmetic.

e GRAPHISOMORPHISM: Given two graphs, determine whether they are isomorphic
(i.e. are they actually the same graph, but with the vertices permuted?).

It’s worth noting that problems related to factoring and discrete logarithm lie at the heart of
some widely-used encryption systems. Graph isomorphism also has numerous applications,
including compiler optimizations and certain kinds of search functionality.



4 Some related problems that are in P

And while we are in the business of deflating some of the rhetoric surrounding NP-
completeness, let’s remind ourselves that there are some quite remarkable algorithms solv-
ing important, difficult problems in polynomial time. A short list would include:

e PRIMALITY: Given an integer, determine whether or not it is prime.

e MINCuT: Given a weighted graph, split the vertices into two subsets so that the
total weight of the edges between the subsets is minimized.

e SHORTESTPATH: Find the shortest path between vertices in a weighted graph.

o LINEARPROGRAMMING: Find an optimal solution to a set of linear equations and
inequalities.

It’s interesting to note that in every one of these cases, a seemingly small change to the
problem catapults it from P to NP or NPComplete. Specifically:

e PrRIMALITY (P) becomes FACTOR (NP, believed to require exponential time) if we
have to find a factor rather than merely detecting its existence.

e MINCUT (P) becomes MAXCuUT (NPComplete) if we look for the largest, rather than
smallest cut.

e SHORTESTPATH (P) becomes LONGESTPATH (NPComplete) if we look for the longest,
rather than shortest path.

e LINEARPROGRAMMING (P) becomes INTEGERPROGRAMMING (NPComplete) if we
insist on integer-valued, rather than real-valued variables.

5 Some NP-hard problems can be approximated efficiently

Here’s some more good news: despite the fact that we can’t solve them exactly, some
NP-hard problems can be approximated efficiently. For example, there is a polynomial
time algorithm guaranteed to find a solution to TRAVELINGSALESPERSON at most 50%
longer than the optimal solution. And the TASKASSIGNMENT problem defined above, de-
spite being NP-hard, can be approximated arbitrarily welll That is, giving any desired
accuracy—say, 1%—there’s a polytime algorithm that finds a solution of the desired accu-
racy.



6 Some NP-hard problems can be solved efficiently for real-
world inputs

Our last piece of good news to combat the gloom of NP-completeness is that there are
some NP-hard problems that have efficient algorithms in practice. This means that the
worst-case running time of the algorithm is exponential, but the algorithm happens to run
efficiently on large instances of the problem that are actually encountered in the real world.
The most famous example of this is SAT. Solving SAT problems is a huge industry in its
own right. There are annual contests held for various types of real-world SAT problems,
and researchers are constantly coming up with improved SAT-solvers that perform well in
these contests on problem instances involving millions of clauses.



