MacCormick draft. Please don’t distribute. 1

COMP 314 Homework Assignment C

Chapter 5

Question C1. (Ungraded) As suggested on page 95, use JFLAP to imple-
ment a Turing machine swapCandG, that changes every “C” to a “G”, and
every “G” to a “C”. Test your machine on multiple inputs.

Question C2. (Ungraded) Using JFLAP, create your own version of the
binaryIncrementer machine described on page 97. Construct your ma-
chine without looking at the solution given in Figure 5.10.

Question C3. (15 points) Use JFLAP to create a binaryDecrementer
machine, whose behavior is similar to the incrementer in the previous ques-
tion except that it to decrements binary numbers rather than incrementing
them. Your machine’s output is permitted to contain leading zeros. For
example, “x10x” becomes “x01x”.

Question C4. (Ungraded) Suppose we wish to construct a Turing machine
noMoreCsThanGs, which accepts genetic strings whose number of Cs is no
more than the number of Gs. This can be achieved by making some simple
changes to the moreCsThanGs machine of Figure 5.9. Describe the changes
that would be required. (There is no need to draw a diagram of the resulting
machine.)

Question C5. (5 points) The proof on page 107 was written for the specific
case of a machine M with two tapes and 129 symbols in its alphabet. The
resulting simulator, M’, used a larger alphabet. In general, how many
symbols would be in the alphabet of M’ when the same kind of simulation
is used for an M with k tapes and an alphabet of s symbols?

Question C6. (Ungraded) Let M be a 6-tape, single-head Turing machine
that employs an alphabet of 10 symbols. Suppose we use a technique similar
to the proof on page 107 to show that M can be simulated by a 2-tape,
single-head Turing machine M’. How many symbols are in the alphabet of
M'? Explain your answer.

Note: M’ has two tapes, which differs from the proof on page 107. The
intention of this question is that the simulation should use both of these
tapes, approximately equally. You could, of course, use exactly the same
simulation as the proof on page 107, by employing only one of the tapes on
M’. But that would be no fun.

Question C7. (5 points) The proof on page 110 was written for the specific
case of a machine M with two tapes and two independent heads. Suppose



2 MacCormick draft. Please don’t distribute.

instead that M has k tapes, k independent heads, and s symbols in its
alphabet. How many tapes and symbols are required by the corresponding
single-head simulator M’?

Question C8. (Ungraded) Suppose M is a standard (single-tape) Turing
machine using the five-symbol alphabet ¥ = {a,b, c,d, e}. Give a high-level
description of how to simulate M using a standard (single-tape) Turing
machine M’ that employs the four-symbol alphabet ¥’ = {a,b, ¢,d}. Your
simulation need only work correctly for input and output strings that con-
tain no “e” characters. More precisely, M’ must have the property that if
Te¥™* and M(I) e X'*, then M'(I) = M(I).

Question C9. (20 points) On page 115, it was stated that any CPU
instruction could be implemented with a Turing machine building block.
This question asks you to create such building blocks for two common
CPU instructions.

(a) Construct a Turing machine that implements the SHIFT instruction.
The input is a binary string flanked by x characters, and the output is
the binary string shifted right by one bit. The right-most bit is deleted,
the string is padded on the left with a 0, and the final result is flanked
by x characters. Example: “x11001x” becomes “x01100x”.

(b) Construct a Turing machine that implements the logical AND instruc-
tion. The input is two binary strings separated and flanked by x char-
acters. The output is “x1x” if both binary strings were nonzero, and
“x0x” otherwise. Examples: “x101x0100x” becomes “x1x”; “x00x010x”
becomes “x0x”.

Question C10. (Ungraded) Write your own version of simulateTM.py
(see Figure 5.19), without consulting the version provided with the book
materials.

Question C11. (15 points) Consider the binaryDecrementer Turing
machine you constructed for an earlier question. Give an ASCII descrip-
tion desc(binaryDecrementer) of this machine, using the construction sug-
gested by Figure 5.18.

Question C12. (Ungraded) Conduct experiments with simulateTM.py,
as suggested on page 117. In particular, try out

>>> simulateTM(rf (’containsGAGA.tm’), ’TTGAGATT’)
and

>>> simulateTM(rf (’binaryIncrementer.tm’), ’x101x’)



MacCormick draft. Please don’t distribute. 3

Question C13. (Ungraded) A quantum algorithm is an algorithm (i.e.
a computer program) that runs on a quantum computer. Is it likely that
someone will invent a quantum algorithm that solves the problem YESON-
STRING? Why or why not?

Question C14. (Ungraded) On page 15, Chapter 1 described an in-
tractable problem known as multiple sequence alignment, which we will now
abbreviate as MULTSEQALIGN. Suppose we augment a standard modern
computer with a black box that can instantaneously solve any instance of
MULTSEQALIGN, and equip the computer with as much memory as neces-
sary. Is this type of augmented computer Turing-equivalent to the class of
multi-tape Turing machines? Explain your answer.

Chapter 6

Question C15. (Ungraded) Conduct all the experiments suggested in
Chapter 6, including:

(a) Experiment with using exec() on various snippets of Python.

(b) Use universal.py to determine the output of countLines.py on sev-
eral different inputs.

(¢) Experiment with simulating altered versions of programs by trying var-
ious inputs to simAltKangarooToKoala.py.

Question C16. (5 points) Let U be a universal Turing machine. Suppose
we wish to use U to simulate the operation of the binaryIncrementer
machine (page 97) on input “x1001x”. Describe the input string I that
should be given to U in order to achieve this simulation.

Question C17. (10 points) Write a Python program repeat.py that
takes as input a single string parameter S. The parameter S encodes two
strings P and I in the usual way: S = ESS(P,I). The output of repeat.py
is the concatenation of P(I) with itself.

Question C18. (Ungraded) Write a Python program applyBothTwice.py
that takes as input a single string parameter .S. The parameter S encodes
three strings P,Q, I in the following way: S = ESS(ESS(P,Q),I). The
output of applyBothTwice.py is Q(P(Q(P(I))).

Total points on this assignment: 75



