
The Science of Search 

Engines

John MacCormick

Microsoft Research Silicon Valley



Search engines have profoundly 

changed the way ordinary people 

use computers

• huge amount of information available

– “most” of the world’s “useful” information is 

out there on the Web??

• search engines are incredibly easy to use

– no fancy query language needed



Google in 1998



Google in 1998



Google in 1998



Google’s storage system in 1998

(ten 9-gigabyte hard drives)



how do search engines do it?

1. web crawling

2. indexing

3. searching

a) retrieval

b) ranking



how do search engines do it?

1. web crawling

2. indexing

3. searching

a) retrieval

b) ranking



what is the ranking problem?

• “scrambled eggs” gets nearly one million 

hits

• user only has patience to look at about 10 

results

• need to rank the one million hits, and 

present the top 10 on the first page of 

results



which page is probably more 

“useful” or “authoritative”?

links to a page 

confer authority 

on that page



which page is probably more 

“useful” or “authoritative”?

links from a more 

authoritative 

page confer 

greater authority



PageRank computes the authority 

of a page rigorously, using matrix 

algebra

• create “hyperlink matrix”

• transform slightly (details omitted)

• compute principal eigenvector
– nth coordinate of the eigenvector is the PageRank of 

the nth page



how do search engines do it?

1. web crawling

2. indexing

3. searching

a) retrieval

b) ranking



standard indexing uses document IDs

the cat sat on 

the mat

the dog stood on 

the mat

the cat stood 

while a dog sat

a 3

cat 1 3

dog 2 3

mat 1 2

the 1 2 3

sat 1 3

stood 2 3

on 1 2

while 3

1 2 3

while

dog

cat dog

“cat sat”

example queries:

standard 

indexing is 

not powerful 

enough



brilliant idea number 1: index word 

locations within documents

the cat sat on 

the mat

the dog stood on 

the mat

the cat stood 

while a dog sat
1 2 3

a 3.5

cat 1.2 3.2

dog 2.2 3.6

mat 1.6 2.6

the 1.1 1.5 2.1 2.5 3.1

sat 1.3 3.7

stood 2.3 3.3

on 1.4 2.4

while 3.4



phrase queries are easy using 

location-based indexing

... ...

cat ... 5.9 6.1 8.3 ...

sat ... 4.2 6.3 6.9 9.5

... ...

query: “cat sat”

result: no documents match



phrase queries are easy using 

location-based indexing

... ...

cat ... 5.9 6.8 8.3 ...

sat ... 4.2 6.3 6.9 9.5

... ...

query: “cat sat”

result: document 6 matches



NEAR queries are also easy using 

location-based indexing

... ...

cat ... 5.9 6.1 8.3 ...

sat ... 4.2 6.5 6.9 9.5

... ...

query: cat NEAR sat

result: no matches



NEAR queries are also easy using 

location-based indexing

... ...

cat ... 5.9 6.9 8.3 ...

sat ... 4.2 6.5 6.7 9.5

... ...

query: cat NEAR sat

result: document 6 matches



knowing NEARness is also 

important for ranking

• example query: departed movie

• document 1:

– “...The Departed is an great movie starring 
Jack Nicholson...”

• document 2:

– “blog blog blog ... went to see a movie ... blog 
blog blog ... more blog ... had to fly to New 
York ... flight was late ... it finally departed at 
10 PM”

document 1 should be ranked higher; 

location-based indexing lets you do that



brilliant idea number 2: use 

metawords to permit queries that 

reflect the structure of documents

My Cat

the cat sat on 

the mat

My Dog

the dog stood on 

the mat

My Pets

the cat stood 

while a dog sat

1 2 3



brilliant idea number 2: use 

metawords to permit queries that 

reflect the structure of documents

<title>My Cat</title>

<body>the cat sat on 

the mat</body>

<title>My Dog</title>

<body>the dog stood 

on the mat</body>

<title>My Pets</title>

<body>the cat stood 

while a dog sat</body>

1 2 3



brilliant idea number 2: use 

metawords to permit queries that 

reflect the structure of documents

<title>My Cat</title>

<body>the cat sat on 

the mat</body>

<title>My Dog</title>

<body>the dog stood 

on the mat</body>

<title>My Pets</title>

<body>the cat stood 

while a dog sat</body>

1 2 3

cat 1.3 1.7 3.7

sat 1.8 3.12

... ...

<title> 1.1 2.1 3.1

</title> 1.4 2.4 3.4

<body> 1.5 2.5 3.5

</body> 1.12 2.12 3.13



queries on document structure are 

easy

... ...

cat ... 5.9 6.8 7.3 ...

... ...

<title> ... 5.2 6.3 7.1

</title> ... 5.4 6.5 7.4

query: cat IN <title>

result: document 7 matches



queries on document structure are 

easy

... ...

cat ... 5.7 6.4 8.3 ...

... ...

<title> ... 5.2 6.3 7.1

</title> ... 5.8 6.5 7.4

query: cat IN <title>

result: documents 5 and 6



IN queries also help with ranking

• example query: cat

• document 1: “<title>The Cat

Page</title>...”

• document 2: “<title>John’s 

blog</title><body>blog blog blog...more 

blog blog...I dressed up as a black cat for 

Halloween...blog blog blog</body>

document 1 should be ranked higher; 

location-based indexing lets you do that



location-based indexing can be 

implemented in an elegant object-

oriented framework

• use index stream reader (ISR) objects

• ISR methods are:
– get_loc()

– get_next_loc()

– get_loc_limit()

– get_previous_loc()

• subclasses include:
– ISR_and

– ISR_or

– ISR_not



how do search engines do it?

1. web crawling

2. indexing

3. searching

a) retrieval

b) ranking



some more science behind search 

engines:

• GFS (Google file system)

• MapReduce, Dryad (parallel computation)

• shingling (efficient similarity detection)

• ad pricing (real-time auctions)

• Mercator (web crawling)



thank you very much!

questions?


