The magic of error-correcting codes

John MacCormick, Dickinson College

"Two weekends in a row I came in and found that all my stuff had been dumped and nothing was done. I was really aroused and annoyed because I wanted those answers and two weekends had been lost. And so I said, 'Dammit, if the machine can detect an error, why can't it locate the position of the error and correct it?' "

– Richard Hamming, Bell Telephone Company, 1940s The problem: computers need to store and transmit information using error-prone mechanisms, without making *any* mistakes

- Analogy: a phone number is useless if even one digit is wrong
- Realistic example:
	- 100 MB software download
	- A single incorrect bit could make it crash and/or destroy your data
	- Therefore, even 99.999999% accuracy is not good enough

What causes the errors?

- Examples:
	- WiFi has interfering and competing signals
	- Magnetic media on a hard drive can be unreliable
	- Copper wire and optical fiber can suffer from noise
	- CDs and DVDs can have scratches and dust
- In fact, every known method of storing or transmitting information is subject to errors

The problem: computers need to store and transmit information using error-prone mechanisms, without making *any* mistakes

- Solutions (the main topic of this talk):
	- Error-*detecting* codes
	- Error-*correcting* codes
	- *Erasure* codes

Plan of attack for understanding errordetecting/correcting/erasure codes

- Part A: 5 tricks
	- Each one is unrealistically naïve, but gives insight into how real-world codes work
- Part B: 3 interesting applications

Trick 1: the repetition trick

- Example: receive bank balance of \$5293.75. Is it correct?
- Simple fix: ask them to send it four more times:
	- transmission 1: $\textcolor{red}{\$} \textcolor{red}{5}$ 2 9 3 . 7 5 $$5$ 2 1 3 . 7 transmission 2: 5 transmission $3: $5 \ 2 \ 1 \ 3 \ . \ 1$ $\mathbf{1}$ transmission 4: $$5443$. 7 5 $\frac{1}{2}$ $7\quad 2$ transmission 5: 1 8 $\overline{7}$ 5

• Choose the majority vote for each digit

Trick 1: the repetition trick

- Example: receive bank balance of \$5293.75. Is it correct?
- Simple fix: ask them to send it four more times:
	- transmission 1: \$ 5 2 9 3 $\overline{7}$ 5 $5 \t2 \t1 \t3$ transmission 2: $\mathbf{\$}$. 7 5 $\frac{1}{2}$ $5 \t2 \t1 \t3$ transmission 3: 1 $\mathbf{1}$ transmission 4: $\frac{1}{2}$ $5\quad 4$ 4 3 $7\overline{7}$ 5 transmission 5: $\frac{1}{2}$ $7\quad 2$ $1 \quad$ 8 5 7 \$ most common digit: $5\quad 2$ $1 -$ 3 5
- Choose the majority vote for each digit

Trick 1: the repetition trick

- Disadvantage: Enormous overhead e.g. 400% overhead for 4 extra repetitions
- Nevertheless, this "stupid" trick is widely used (for storage, not communication)
	- e.g. the Google file system stores 3 copies of each chunk (Ghemawat et al 2003)

Trick 2: the redundancy trick

• Main idea: transmit the bank balance using a redundant description of each digit

– e.g. use English words:

five two one three point seven five

– Even with 20% random errors, it's unambiguous:

fiqe kwo one thrxp point sivpn fivq

The redundancy trick translates *symbols* into *code words*, and back again

A code using English words for digits.

The redundancy trick is used in real computer systems

Encoding Decoding 0000000 0000 \rightarrow 0010111 (exact match) $\rightarrow 0001011$ \rightarrow 0010 0001 (closest match) $0010 \rightarrow 0010111$ 0010110 \rightarrow 0010 \rightarrow 0011 (closest match) $0011 \rightarrow 0011100$ 1011100 $0100 \rightarrow 0100110$

Part of the (7,4) Hamming code, invented in 1947. Hamming-based codes are still used today, in DRAM.

Trick 3: the checksum trick

- Basic idea: message is a string of digits, checksum is the sum of the digits, mod 10.
- checksum original message 6 7 5 6 4 8 6 7 5 6 message with one error $1¹$ 5 5 7 5 6 message with two errors 1 message with two (different) errors $\overline{2}$ $8¹$ $\overline{7}$ $5 -$ 6 8
	- Simple checksum detects any *single* error, but does not necessarily detect multiple errors
	- Fancier checksums are ubiquitous in real life (e.g. ethernet, TCP). Also closely related to hashes (e.g. MD5, SHA-256).

Trick 4: the staircase checksum

- Basic idea: to detect two errors, include a second checksum
- Compute 2^{nd} checksum from a "staircase," e.g.
	- $-$ (1 x 1st digit) + (2 x 2nd digit) + (3 x 3rd digit) + ...

simple and staircase checksums original message 6 7 5 6 87 $\begin{array}{cccccc} 1 & 6 & 7 & 5 & 6 \\ \hline 1 & 5 & 7 & 5 & 6 \end{array}$ message with one error message with two errors message with two (different) errors 28756 $8|$ 9 message with two (again different) errors $5¹$ 5 $\overline{7}$ $7\degree$ 6

- Oops, doesn't actually work, unless the staircase operations are in a certain finite field.
	- When done right, with multiple staircases, this gives Reed-Solomon codes, which are used in real life (e.g. on CDs) 14

Trick 5: the pinpoint trick

• Main idea: use horizontal and vertical
checksums to pinpoint the error checksums to pinpoint the error 4837543622563997

 $\begin{pmatrix} 4 & 8 & 3 & 7 \\ 5 & 4 & 3 & 6 \\ 2 & 2 & 5 & 6 \\ 3 & 9 & 9 & 7 \end{pmatrix}$

Trick 5: the pinpoint trick

• Main idea: use horizontal and vertical
checksums to pinpoint the orrer checksums to pinpoint the error

4837543622563997

How to pinpoint the error
483725436827565399784306 message

How to pinpoint the error every 483725436827565399784306 wessage received 4 8 3 7
5 4 3 6
2 7 5 6
3 9 9 7 $\overline{2}$ 8 5 $\overline{2}$ 8 8 $\mathbf{3}$ $\overline{2}$ 4 $5 \quad 4 \quad 3$ 3 6 $\overline{4}$ 6 8 8 Ω

$$
\begin{array}{c|cccc}\n\hline\n\text{relative} & & & \\
\hline\n\text{relative} & & & \\
\hline\n\text{average} & & & \\
\hline\n\text{average}
$$

⌒

How to pinpoint the error
483725436827565399784306 wessage $\begin{pmatrix} 4 & 8 & 3 & 7 & 2 \\ 5 & 4 & 2 & 2 & 2 \end{pmatrix}$ agived red

How to pinpoint the error
483725436827565399784306 wessage \log

Summary of tricks

- Repetition: detects and corrects, but too much overhead.
- Redundancy: detects and corrects, but how do we find good codewords?
- Checksum: detects only. Can fill a single erasure.
- Multiple staircase checksums: detects and corrects multiple errors, and also good for erasures.
- Pinpoint: detects and corrects, but turns out to be less effective than state-of-the-art approaches.

Plan of attack for understanding errordetecting/correcting/erasure codes

• Part A: 5 tricks

– Each one is unrealistically naïve, but gives insight into how real-world codes work

• Part B: 3 interesting applications

Application 1: how densely should we pack the bits on a disk?

Application 2: disk arrays (RAID5 and RAID6)

Can survive and rebuild after losing any *one* disk

 $E = A \bigoplus B(F) \bigoplus D$

Application 2: disk arrays (RAID5 and RAID6)

Application 3: fountain codes for geographically-distributed file storage

Application 3: fountain codes for geographically-distributed file storage

site 3

 ICP

 $\mathsf{M}% _{T}=\mathsf{M}_{T}\!\left(a,b\right) ,\ \mathsf{M}_{T}=\mathsf{M}_{T}\!\left(a,b\right) ,\ \mathsf{M}_{T}=\mathsf{M}_{T}\!\left(a,b\right) ,$

 \Box

N

 $_{the}$ 2</sub>

 P

 \mathcal{R}

NUS

 \leq

 KLN

 H

Site

Mixed droplets are randomly gathered. Pure droplets can be reconstructed via XOR with probability \approx 1, with about 5% overhead (Byers et al, 2002).

 FHL

 s le 4

 $siteS$

NPS

 A

DQ.

$$
A = BL \oplus L
$$
\n
$$
F = FL \oplus L
$$
\n
$$
H = FL \oplus FL ...^{27}
$$

"Two weekends in a row I came in and found that all my stuff had been dumped and nothing was done. I was really aroused and annoyed because I wanted those answers and two weekends had been lost. And so I said, 'Dammit, if the machine can detect an error, why can't it locate the position of the error and correct it?' "

– Richard Hamming, Bell Telephone Company, 1940s