The magic of error-correcting
codes

John MacCormick, Dickinson College

“Two weekends in a row | came in and found
that all my stuff had been dumped and nothing
was done. | was really aroused and annoyed
because | wanted those answers and two
weekends had been lost. And so | said,
‘Dammit, if the machine can detect an error,
why can't it locate the position of the error and
correct it?” ”

— Richard Hamming,
Bell Telephone Company, 1940s

The problem: computers need to store and
transmit information using error-prone
mechanisms, without making any mistakes

* Analogy: a phone number is useless if even one digit is
wrong

e Realistic example:
— 100 MB software download

— A single incorrect bit could make it crash and/or destroy
your data

— Therefore, even 99.999999% accuracy is not good enough

What causes the errors?

 Examples:
— WiFi has interfering and competing signals
— Magnetic media on a hard drive can be unreliable

— Copper wire and optical fiber can suffer from
noise

— CDs and DVDs can have scratches and dust

* |n fact, every known method of storing or
transmitting information is subject to errors

The problem: computers need to store and
transmit information using error-prone
mechanisms, without making any mistakes

e Solutions (the main topic of this talk):
— Error-detecting codes
— Error-correcting codes
— Erasure codes

Plan of attack for understanding error-
detecting/correcting/erasure codes

e Part A: 5 tricks

— Each one is unrealistically naive, but gives insight
into how real-world codes work

e Part B: 3 interesting applications

Trick 1: the repetition trick

* Example: receive bank balance of $5293.75. Is
it correct?

* Simple fix: ask them to send it four more
times:

transmission 1: $ 5 2 9 3 7 5
transmission 2: $ 5 2 1 3 7 5
transmission 3: $ 5 2 1 3 1 1
transmission 4. $ 5 4 4 3 7 5
transmission 5: $§ 7 2 1 8 7 5

* Choose the majority vote for each digit

Trick 1: the repetition trick

* Example: receive bank balance of $5293.75. Is

it correct?

* Simple fix: ask them to send it four more
times:

transmission 1:
transmission 2:
transmission 3:
transmission 4:
transmission 5:
most common digit:

&R &L &L & & FH
Or N O O O O
N N DD DN DN
= = D = = O
W 00 W W W w

* Choose the majority vote for each digit

~N NN = NN

o O 01 = O O

Trick 1: the repetition trick

* Disadvantage: Enormous overhead e.g. 400%
overhead for 4 extra repetitions

* Nevertheless, this “stupid” trick is widely used
(for storage, not communication)

— e.g. the Google file system stores 3 copies of each
chunk (Ghemawat et al 2003)

Trick 2: the redundancy trick

 Main idea: transmit the bank balance using a
redundant description of each digit

— e.g. use English words:

five two one three point seven five

— Even with 20% random errors, it’'s unambiguous:

fige kwo one thrxp point sivpn fivq

The redundancy trick translates symbols
into code words, and back again

Encoding
Decoding
1 — one
2 — two five — 5 (exact match)
3 — three fige — 5 (closest match)
4 — four twe — 2 (closest match)
5 — five
A code using English words for digits.

The redundancy trick is used in real
computer systems

Encoding
0000 — 0000000
0001 — 0001011
0010 — 0010111
0011 — 0011100
0100 — 0100110

Decoding

0010111 — 0010 (exact match)
0010110 — 0010 (closest match)
1011100 — 0011 (closest match)

Part of the (7,4) Hamming code, invented in 1947.
Hamming-based codes are still used today, in DRAM.

Trick 3: the checksum trick

e Basic idea: message is a string of digits, checksum

is the sum of the digits, mod 10.

original message

message with one error

message with two errors

message with two (different) errors

L
1
1

2

g1 O O

3

~N NN

7

o O O

5

o O OO O

checksum
8

5
4
3

e Simple checksum detects any single error, but

does not necessarily detect multiple errors

* Fancier checksums are ubiquitous in real life (e.g.
ethernet, TCP). Also closely related to hashes

(e.g. MD5, SHA-256).

Trick 4: the staircase checksum

 Basic idea: to detect two errors, include a second
checksum

e Compute 2" checksum from a “staircase,” e.g.
— (1 x 1%t digit) + (2 x 2"9 digit) + (3 x 3™ digit) + ...

simple and

staircase

checksums
original message 4 6 7 5 6 8 7
message with one error 1 6 7 5 6 54
message with two errors 1 5 7 5 6 42
message with two (different) errors 2 8 7 5 6 8 9
message with two (again different) errors 6 5 7 5 6 9 7

* Oops, doesn’t actually work, unless the staircase
operations are in a certain finite field.

— When done right, with multiple staircases, this gives Reed-
Solomon codes, which are used in real life (e.g. on CDs)

Trick 5: the pinpoint trick

e Main idea: use horizontal and vertical

checksums to pinpoint the error P
¢

4837543622563997

.

e
- W@QSM

W N O b
© N &
©O© 01 W W

~N Oy O N

Trick 5: the pinpoint trick

* Main idea: use horizontal and vertical 2.
L PASNN
checksums to pinpoint the error /(w
¢
4837543622563997
brovoptad PRH9E
4 8 3 7 b v
S 5 4 3 6 4 8 3 T | 2
2 2 5 6 5 4 3 6| 8
38 97| 32 25 65
3 9 9 7 |8
CWLS\A\N\ 4 3 0] 6

16

How to pinpoint the error
gy
4837254368275653997843%6 wveh sr9=

coO O1 00 N

LW N o b
WO N b
Ol O W W
DN O OO N

17

How to pinpoint the error

re,(/@\\l@j
e
4837254368275653997843086 W39
4 8 3 7]2 N 1/
5 4 3 6|8 ‘M\ Wf
> 7 5 65 Vo
3 9 9 7.8 4 8 3 72 2
4 3 0 6 5 4 3 6|8 8
|27 5 6|5 0
3 9 9 T |18 8
o~ ~s|1 4 3 0 6
et ’ 4 8 0 6
) e

A\ ed p

How to pinpoint the error

re,(/@\\l@j
e
4837254368275653997843086 W39
4 8 3 7]2 N 1/
5 4 3 6|8 ‘M\ Wf
> 7 5 65 Vo
3 9 9 7.8 4 8 3 72 2
4 3 0 6 5 4 3 6|8 8
|27 5 6|5 0
3 9 9 T |18 8
o~ ~—s|1 4 3 0 6
et ’ 4 8 0 6
) 7

A\ ed s

How to pinpoint the error

re,(/@\\l@j
e
4837254368275653997843086 W39
4 8 3 7]2 N 1/
5 4 3 6|8 ‘M\ Wf
> 7 5 65 Vo
3 9 9 7.8 4 8 3 72 2
4 3 0 6 5 4 3 6|8 8
|27 5 6|5 o0
3 9 9 T |18 8
o~ ~—s|1 4 3 0 6
et ’ 4 8 0 6
) 7

A\ ed "

Summary of tricks

Repetition: detects and corrects, but too much
overhead.

Redundancy: detects and corrects, but how do
we find good codewords?

Checksum: detects only. Can fill a single erasure.

Multiple staircase checksums: detects and
corrects multiple errors, and also good for
erasures.

Pinpoint: detects and corrects, but turns out to
be less effective than state-of-the-art approaches.

Plan of attack for understanding error-
detecting/correcting/erasure codes

e Part A: 5 tricks

— Each one is unrealistically naive, but gives insight
into how real-world codes work

—_—

e Part B: 3 interesting applications

Application 1: how densely should we
pack the bits on a disk?

Option A: Loose Option B: Dense Option C: Dense
and redundant
3

raw density:
raw error rate: 10‘10 10‘5 107>
overhead: 0% 0% 50%
effective density: 1 3 2
effective error rate: 10~10 107> 10715
v, V. NV W XX 5y D N KR DD N
VX ¢ N X<
Warning: numbers K>x> XXX < X
here are purely W ~ Ve > YOX X > X > YX <
illustrative. Units

omitted deliberately! 23

Application 2: disk arrays (RAID5 and
RAIDG6)

Can survive and
rebuild after losing
any one disk

N\

\%
R

0= AR CH D

Application 2: disk arrays (RAID5 and
RAIDG6)

Can survive and
rebuild after losing
any two disks

C = A @ & @ («@ D Finite field operations,
not ordinary arithmetic

F=RO1800 4D -

Q/P\\D b

(L

M
o

Application 3: fountain codes for
geographically-distributed file storage

(Al ol clolelelalplalTlefelm in (a\pw

Droplets are randomly selected,
/ {(}I()«)Red), and scattered
& 7 U >

C

Application 3: fountain codes for

geographically-distributed file storage
ale 4 e §

Mixed droplets are randomly gathered.

Pure droplets can be reconstructed via
XOR with probability = 1, with about
5% overhead (Byers et al, 2002).
AR L, F A
AU Ly |)
‘o T~—— R= RLOL
-) F= ol
'%: FHL,Q') FL - & ‘27

“Two weekends in a row | came in and found
that all my stuff had been dumped and nothing
was done. | was really aroused and annoyed
because | wanted those answers and two
weekends had been lost. And so | said,
‘Dammit, if the machine can detect an error,
why can't it locate the position of the error and
correct it?” ”

— Richard Hamming,
Bell Telephone Company, 1940s

28

