
The magic of error-correcting
codes

John MacCormick, Dickinson College

1

“Two weekends in a row I came in and found
that all my stuff had been dumped and nothing
was done. I was really aroused and annoyed
because I wanted those answers and two
weekends had been lost. And so I said,
‘Dammit, if the machine can detect an error,
why can't it locate the position of the error and
correct it?’ ”

– Richard Hamming,
Bell Telephone Company, 1940s

2

The problem: computers need to store and
transmit information using error-prone

mechanisms, without making any mistakes

• Analogy: a phone number is useless if even one digit is
wrong

• Realistic example:
– 100 MB software download

– A single incorrect bit could make it crash and/or destroy
your data

– Therefore, even 99.999999% accuracy is not good enough

3

What causes the errors?

• Examples:

– WiFi has interfering and competing signals

– Magnetic media on a hard drive can be unreliable

– Copper wire and optical fiber can suffer from
noise

– CDs and DVDs can have scratches and dust

• In fact, every known method of storing or
transmitting information is subject to errors

4

The problem: computers need to store and
transmit information using error-prone

mechanisms, without making any mistakes

• Solutions (the main topic of this talk):

– Error-detecting codes

– Error-correcting codes

– Erasure codes

5

Plan of attack for understanding error-
detecting/correcting/erasure codes

• Part A: 5 tricks

– Each one is unrealistically naïve, but gives insight
into how real-world codes work

• Part B: 3 interesting applications

6

Trick 1: the repetition trick
• Example: receive bank balance of $5293.75. Is

it correct?

• Simple fix: ask them to send it four more
times:

• Choose the majority vote for each digit
7

Trick 1: the repetition trick
• Example: receive bank balance of $5293.75. Is

it correct?

• Simple fix: ask them to send it four more
times:

• Choose the majority vote for each digit
8

Trick 1: the repetition trick

• Disadvantage: Enormous overhead e.g. 400%
overhead for 4 extra repetitions

• Nevertheless, this “stupid” trick is widely used
(for storage, not communication)

– e.g. the Google file system stores 3 copies of each
chunk (Ghemawat et al 2003)

9

Trick 2: the redundancy trick

• Main idea: transmit the bank balance using a
redundant description of each digit

– e.g. use English words:

– Even with 20% random errors, it’s unambiguous:

10

The redundancy trick translates symbols
into code words, and back again

11

The redundancy trick is used in real
computer systems

Part of the (7,4) Hamming code, invented in 1947.
Hamming-based codes are still used today, in DRAM.

12

Trick 3: the checksum trick
• Basic idea: message is a string of digits, checksum

is the sum of the digits, mod 10.

• Simple checksum detects any single error, but
does not necessarily detect multiple errors

• Fancier checksums are ubiquitous in real life (e.g.
ethernet, TCP). Also closely related to hashes
(e.g. MD5, SHA-256).

13

Trick 4: the staircase checksum
• Basic idea: to detect two errors, include a second

checksum
• Compute 2nd checksum from a “staircase,” e.g.

– (1 x 1st digit) + (2 x 2nd digit) + (3 x 3rd digit) + …

• Oops, doesn’t actually work, unless the staircase

operations are in a certain finite field.
– When done right, with multiple staircases, this gives Reed-

Solomon codes, which are used in real life (e.g. on CDs)
14

Trick 5: the pinpoint trick

• Main idea: use horizontal and vertical
checksums to pinpoint the error

15

Trick 5: the pinpoint trick

• Main idea: use horizontal and vertical
checksums to pinpoint the error

16

How to pinpoint the error

17

How to pinpoint the error

18

How to pinpoint the error

19

How to pinpoint the error

20

Summary of tricks

• Repetition: detects and corrects, but too much
overhead.

• Redundancy: detects and corrects, but how do
we find good codewords?

• Checksum: detects only. Can fill a single erasure.
• Multiple staircase checksums: detects and

corrects multiple errors, and also good for
erasures.

• Pinpoint: detects and corrects, but turns out to
be less effective than state-of-the-art approaches.

21

Plan of attack for understanding error-
detecting/correcting/erasure codes

• Part A: 5 tricks

– Each one is unrealistically naïve, but gives insight
into how real-world codes work

• Part B: 3 interesting applications

22

Application 1: how densely should we
pack the bits on a disk?

Option A: Loose Option B: Dense Option C: Dense
and redundant

raw density: 1 3 3

raw error rate: 10−10 10−5 10−5

overhead: 0% 0% 50%

effective density: 1 3 2

effective error rate: 10−10 10−5 10−15

23

Warning: numbers
here are purely
illustrative. Units
omitted deliberately!

Application 2: disk arrays (RAID5 and
RAID6)

24

Can survive and
rebuild after losing
any one disk

Application 2: disk arrays (RAID5 and
RAID6)

25

Can survive and
rebuild after losing
any two disks

Finite field operations,
not ordinary arithmetic

Application 3: fountain codes for
geographically-distributed file storage

Droplets are randomly selected,
mixed (XORed), and scattered

26

Application 3: fountain codes for
geographically-distributed file storage

Mixed droplets are randomly gathered.
Pure droplets can be reconstructed via
XOR with probability ≈ 1, with about
5% overhead (Byers et al, 2002).

27

“Two weekends in a row I came in and found
that all my stuff had been dumped and nothing
was done. I was really aroused and annoyed
because I wanted those answers and two
weekends had been lost. And so I said,
‘Dammit, if the machine can detect an error,
why can't it locate the position of the error and
correct it?’ ”

– Richard Hamming,
Bell Telephone Company, 1940s

28

