The magic of error-correcting codes

John MacCormick, Dickinson College

"Two weekends in a row I came in and found that all my stuff had been dumped and nothing was done. I was really aroused and annoyed because I wanted those answers and two weekends had been lost. And so I said, 'Dammit, if the machine can detect an error, why can't it locate the position of the error and correct it?' "

Richard Hamming,
 Bell Telephone Company, 1940s

The problem: computers need to store and transmit information using error-prone mechanisms, without making *any* mistakes

- Analogy: a phone number is useless if even one digit is wrong
- Realistic example:
 - 100 MB software download
 - A single incorrect bit could make it crash and/or destroy your data
 - Therefore, even 99.99999% accuracy is not good enough

What causes the errors?

- Examples:
 - WiFi has interfering and competing signals
 - Magnetic media on a hard drive can be unreliable
 - Copper wire and optical fiber can suffer from noise
 - CDs and DVDs can have scratches and dust
- In fact, every known method of storing or transmitting information is subject to errors

The problem: computers need to store and transmit information using error-prone mechanisms, without making *any* mistakes

- Solutions (the main topic of this talk):
 - Error-*detecting* codes
 - Error-correcting codes
 - Erasure codes

Plan of attack for understanding errordetecting/correcting/erasure codes

- Part A: 5 tricks
 - Each one is unrealistically naïve, but gives insight into how real-world codes work
- Part B: 3 interesting applications

Trick 1: the repetition trick

- Example: receive bank balance of \$5293.75. Is it correct?
- Simple fix: ask them to send it four more times:
 - transmission 1: \$ 5 2 9 3 . 7 5 \$ 5 2 1 3 . 7 transmission 2: 5 transmission 3: \$ 5 2 1 3 . 1 1 transmission 4: \$ 5 4 4 3 . 7 5 \$ 7 2 1 transmission 5: 8 7 5

• Choose the majority vote for each digit

Trick 1: the repetition trick

- Example: receive bank balance of \$5293.75. Is it correct?
- Simple fix: ask them to send it four more times:
 - transmission 1: \$ 5 2 9 3 7 5 5 2 1 3 transmission 2: \$. 7 5 transmission 3: \$ 5 2 1 3 1 1 transmission 4: \$ 4 3 5 4 7 5 transmission 5: \$ 7 2 1 8 5 7 \$ 5 2 1 3 most common digit: 5
- Choose the majority vote for each digit

Trick 1: the repetition trick

- Disadvantage: Enormous overhead e.g. 400% overhead for 4 extra repetitions
- Nevertheless, this "stupid" trick is widely used (for storage, not communication)
 - e.g. the Google file system stores 3 copies of each chunk (Ghemawat et al 2003)

Trick 2: the redundancy trick

• Main idea: transmit the bank balance using a redundant description of each digit

- e.g. use English words:

five two one three point seven five

- Even with 20% random errors, it's unambiguous:

fiqe kwo one thrxp point sivpn fivq

The redundancy trick translates *symbols* into *code words*, and back again

A code using English words for digits.

The redundancy trick is used in real computer systems

Part of the (7,4) Hamming code, invented in 1947. Hamming-based codes are still used today, in DRAM.

Trick 3: the checksum trick

• Basic idea: message is a string of digits, checksum is the sum of the digits, mod 10.

- Simple checksum detects any *single* error, but does not necessarily detect multiple errors
- Fancier checksums are ubiquitous in real life (e.g. ethernet, TCP). Also closely related to hashes (e.g. MD5, SHA-256).

Trick 4: the staircase checksum

- Basic idea: to detect two errors, include a second checksum
- Compute 2nd checksum from a "staircase," e.g.

 $-(1 \times 1^{st} digit) + (2 \times 2^{nd} digit) + (3 \times 3^{rd} digit) + ...$

- Oops, doesn't actually work, unless the staircase operations are in a certain finite field.
 - When done right, with multiple staircases, this gives Reed-Solomon codes, which are used in real life (e.g. on CDs)

Trick 5: the pinpoint trick

Main idea: use horizontal and vertical checksums to pinpoint the error
4 8 3 7 5 4 3 6 2 2 5 6 3 9 9 7

Trick 5: the pinpoint trick

Main idea: use horizontal and vertical checksums to pinpoint the error
 4 8 3 7 5 4 3 6 2 2 5 6 3 9 9 7

How to pinpoint the error 483725436827565399784306 versage

How to pinpoint the error 483725436827565399784306 versage received 4 8 3 5 4 3 5 4 ()2 7 5

How to pinpoint the error 483725436827565399784306 versage received computed 4 8 3 7 2 5 4 3 6 8 2 7 5 6 5

			_							•	<u> </u>
3	9	9	7	8		4	8	3	7	2	2
4	3	0	6			5	4	3	6	8	8
					A	2	7	5	6	5	0
					3	9	9	7	8	8	
	reive				\rightarrow	4	3	0	6		
re			1.1		\rightarrow	4	8	0	6		
	6	npu	ted				-			1	19

How to pinpoint the error verse verse

Summary of tricks

- Repetition: detects and corrects, but too much overhead.
- Redundancy: detects and corrects, but how do we find good codewords?
- Checksum: detects only. Can fill a single erasure.
- Multiple staircase checksums: detects and corrects multiple errors, and also good for erasures.
- Pinpoint: detects and corrects, but turns out to be less effective than state-of-the-art approaches.

Plan of attack for understanding errordetecting/correcting/erasure codes

• Part A: 5 tricks

 Each one is unrealistically naïve, but gives insight into how real-world codes work

• Part B: 3 interesting applications

Application 1: how densely should we pack the bits on a disk?

	Option A: Loo	se	Option B: Dense	Option C: Dense and redundant		
raw density:	1		3	3		
raw error rate:	10^{-10}		10^{-5}	10 ⁻⁵		
overhead:	0%		0%	50%		
effective density:	1		3	2		
effective error rate:	10^{-10}		10^{-5}	10^{-15}		
Warning: numbers	X X X X	¥ ¥	$ \begin{array}{c} \times \times \times \times \times \times \times \\ \times \times \times \times \times \times \\ \times \times \times \times $	$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$		
here are purely illustrative. Units omitted deliberately!	\star \star	×	×¥×××	×		

Application 2: disk arrays (RAID5 and RAID6)

Can survive and rebuild after losing any *one* disk

E=ABBECED

Application 2: disk arrays (RAID5 and RAID6)

Application 3: fountain codes for geographically-distributed file storage

Application 3: fountain codes for geographically-distributed file storage

site 3

KP

M

T

N

site 2

A

RI

NUS

S

ILN

14

Site

Mixed droplets are randomly gathered. Pure droplets can be reconstructed via XOR with probability ≈ 1, with about 5% overhead (Byers et al, 2002).

FHL

K

site 4

site 5

NPS

Α

DQ

BL (H) L

"Two weekends in a row I came in and found that all my stuff had been dumped and nothing was done. I was really aroused and annoyed because I wanted those answers and two weekends had been lost. And so I said, 'Dammit, if the machine can detect an error, why can't it locate the position of the error and correct it?' "

Richard Hamming,
 Bell Telephone Company, 1940s