The index merge scheduling problem

John MacCormick, Frank **McSherry** Microsoft Research Silicon Valley

Motivation: full text indexing of dynamic content

- data arrives continuously
- queries must reflect latest arrivals
- examples:
	- webmail (Yahoo Mail, Gmail, Hotmail,…)
	- blogs (MSN spaces)
	- news stories (Google News)
	- desktop search
	- Web search

Motivation: full text indexing of dynamic content

- data arrives continuously
- queries must reflect latest arrivals
- examples:
	- webmail (Yahoo Mail, Gmail, Hotmail,…)
	- blogs (MSN spaces)
	- fous or this – news stories (Google News)
	- desktop search
	- Web search

as main

as mone

High -level overview of dynamic content indexing

the index merge scheduling problem: roadmap

1. single index is insufficient for dynamic content – need multiple indexes, and therefore need occasional index merges

7

Definition: a *single index* can retrieve the entire location list for a word in a single I/O

Naïvely indexing dynamic content is far too slow

- Recall:
	- random I/O is slow (10 ms seek time per I/O)
	- sequential I/O is fast (1 seek + 100 MB/s)
- Example of naïve indexing: scientific paper
	- 100 kB as text file
	- contains 2500 unique indexable words
	- naïvely updating each index entry would take 2500 times longer than writing the file sequentially!

Claim: a single index is too slow

Therefore, we need multiple indexes

• 2 basic types: in-memory and on-disk

Index files can be merged using only sequential I/O and little memory

12 •can merge many indexes into 1 simultaneously •in-memory indexes can be merged with on-disk index files •writing out in-memory index to disk by itself can be regarded as a trivial merge

Basic strategy for dynamic indexing: accumulate and merge

- Repeat:
	- accumulate as many documents as possible in an in-memory index
	- merge in-memory index with zero or more index files
- Optionally, in parallel, repeat:

– merge some index files

Exception: if index files are sorted by relevance, some queries require less I/O

the index merge scheduling problem: roadmap

- 1. single index is insufficient for dynamic content – need multiple indexes, and therefore need occasional index merges
- 2. scheduling merges is related to the costdistance problem in network construction

Formula definition of index merge
\nscheduling problem
\ngiven finite sequence of events
$$
(e_1, e_1, e_1) \in \{0, 0\}
$$

\n h
\n h <

edge from A to B means "take all data written immediately after event A and merge it immediately after event B"

edge from A to B means "take all data written immediately after event A and merge it immediately after event B"

merge cost is sum of path lengths from sources to sink

query cost is sum of edge costs

Index merge scheduling is a special case of "directed costdistance" problem

- *undirected* case studied by Meyerson-Munagala-Plotkin 2000
- NP-complete (Steiner tree is special case)
- they give an efficient O(log(number of sources)) approximation
- *directed* case seems much harder
- fortunately, the graph for index merge scheduling has very special structure

the index merge scheduling problem: roadmap

- 1. single index is insufficient for dynamic content – need multiple indexes, and therefore need occasional index merges
- 2. scheduling merges is related to the costdistance problem in network construction
- 3. imposing geometrically decreasing index sizes gives good performance – O(n log n)

- query cost is minimized (linear in number of queries)
- but merge cost is quadratic in the number of data arrivals:

nth arrival costs dn,

so after n data arrivals,

 $C_{merge} = \frac{1}{2}d n(n-1) = O(n^2)$

- of data arrivals)
	- n repititions • but query cost can be quadratic:

e.g. if data and queries alternate (D.Q.D.Q.,.. D.Q) $C_{query} = \frac{1}{2} \beta n (h-1) = O(n^2)$ 28

Maintaining geometrically decreasing index sizes guarantees total I/O cost is O(T log T)

$$
Alqorithw: \qquad \qquad , \qquad f:x \quad K>1 \quad (eg. \ K=2)
$$

index 2 1

indlex 3 14

index 4 9

· Mantain invariant that if inclux rises are sorted so that
 $s_1 > s_2 > ... > s_m$, then $S_i > K s_{i+1}$ for each i

· Aways merge the r smallest indexes,
where r is minimal to keep the invasiont

Maintaining geometrically decreasing index sizes guarantees total I/O cost is O(T log T) $\frac{1}{sin^{10.1}a^{19}}$
rithm: $\frac{1}{2}$ $\frac{1$ Algorithm: Altavista · Mantain invaniant that if sal server indlex 1 1 Mantain invariant that it see paintof
index rises are sorted so that MS paintof
 $s_1 > s_2 > ... > s_n$, then seem of index 2 1 $S_i > K s_{i+1}$ for each i indlex 3 1st . Aways merge the r smallest indexes,
where r is minimal to keep the invasiont index 4 9

query cost is logarithmic in number of data arrivals

$$
N_0
$$
 = number of data arrivals
\n N_{α} = number of queries
\nnumber of index files never exceeds 1+log_K N_0
\n $\Rightarrow C_{queng} \le \beta N_{\alpha} (1 + log_K N_0)$

If we nege inderes with sizes $S_1 > S_2 > ... > S_m$,
obtaining single new index file of size Lemma $s* = s_{1}+s_{2}+...+s_{m}$
then each $s_{i} \leq \frac{k}{k+1} s^{*}$ Proof: $S_2 + .+S_m > S_1$
 $\Rightarrow S^* > S_1 + S_1$ 32

Thus,
\n
$$
C_{merge} \le \alpha N_D \left(1 + log_{\frac{RT}{K}} N_D \right)
$$

\n $\int_{choice\, of K} 1_{noise of K}$
\n $\int_{choice\, of K} 1_{noise of K}$

Thus,
\n
$$
C_{merge} \le \alpha N_{D} (1 + log_{\frac{RH}{K}} N_{D})
$$

\n $\int_{\text{choice of }K} \text{Itooleoff } N_{K}$
\n $\int_{\text{choice of }K} \text{Itooleoff } N_{K}$
\n $\int_{\text{choice of }K} \text{Itooleoff } N_{K}$
\n $\frac{N}{L} \text{Sovise of } K$

the index merge scheduling problem: roadmap

- 1. single index is insufficient for dynamic content – need multiple indexes, and therefore need occasional index merges
- 2. scheduling merges is related to the costdistance problem in network construction
- 3. imposing geometrically decreasing index sizes gives good performance – O(n log n)
- 4. O(n log n) is optimal, in general

O(T log T) is optimal

Claim	If n is a power of 2, the optimal merge schedule costs at least min(a, \beta) $\frac{n}{2} \log_{2} n$
-------	--

Claim	If n is a power of 2, the optimal merge schedule costs at least min(x, β) $\frac{R}{2}$ log n
Proof: Induction on n. Assume for n, prove for 2n: Consider optimal strategy for 2n: 2n	
Back tost into 3 parts: C ₁	

Claim If n is a power of 2, the optimal merge schedule costs at least $min(\alpha, \beta) \triangleq log_{2}n$ Proof: Induction on n. Assume for n, prove for 2n. 3 V_2 Break/fust into 40

Claim:	Ctranslec	is at least	min(α, β) n
post:	Either	every index file created in 1st half gets	
Dewritten in 2nd half			
and $additional$ must be of at least α n			
or	some index file created in 1st half is		
not required along 2nd half			
and rational query cost of at least β n			

Claim	If n is a power of 2, the optimal merge schedule costs at least min (α, β) $\frac{n}{2} log n$
Proof: Induction on n. Assume for n, prove for 2n: Consider optimal strategy for 2n: 2n	
Back tost into 3 parts: C ₁ > m.h(a, β) $\frac{n}{2} log_n n$	

the index merge scheduling problem: roadmap

- 1. single index is insufficient for dynamic content – need multiple indexes, and therefore need occasional index merges
- 2. scheduling merges is related to the costdistance problem in network construction
- 3. imposing geometrically decreasing index sizes gives good performance – O(n log n)
- 4. O(n log n) is optimal, in general
- 5. cost-balancing approach is more flexible and may be superior $- O(n)$ at times

Some input sequences can be processed in linear cost

cost-balancing approach is
\npromising
\n• for every index file, store historian were + query costs
\ni.e. index file described by
$$
(s, m, q)
$$

\n $sine$ may cost
\n• When merging (s_i, m_i, q_i) , $(s_{z_i}, m_{z_i}q_i)$, ... (s_r, m_r, q_r) ,
\nobtain $(\leq s_i, \leq (m_i + \alpha s_i), \leq q_i)$

. On each query, $q_i \mapsto q_i + \beta$

cost-balancing approach is promising

invariant:

\n
$$
m_{i} \leq q_{i}
$$
\n[vagwly analogous to ski central]

\n"balance"

\nStrategy:

\n• always merge the r smaller index files

\n• always merge as many as possible

\nwithport violating balance

cost-balancing approach is promising

$$
0(n)
$$
 lost on $DDD...DQQ...Q$
input.

a much more complex/realistic cost modelling is possible

empirical performance of costbalancing on DQDQ… input is O(n log n)

48

the index merge scheduling problem: summary

- 1. single index is insufficient for dynamic content – need multiple indexes, and therefore need occasional index merges
- 2. scheduling merges is related to the costdistance problem in network construction
- 3. imposing geometrically decreasing index sizes gives good performance – O(n log n)
- 4. O(n log n) is optimal, in general
- 5. cost-balancing approach is more flexible and may be superior $- O(n)$ at times