
Undecidability and more, using
real computer programs

John MacCormick

Dickinson College and University of East Anglia

Computer programs vs Turing machines

rf ≡ readFile

>>> rf('wasteland.txt')

>>> rf('geneticString.txt')

>>> rf('containsGAGA.py')

Programs can analyze other programs, and
they can analyze themselves
• A program analyzing another program:

>>> countLines(rf('containsGAGA.py'))

• A program analyzing itself:

>>> countLines(rf('countLines.py'))

• [demo: Word reading Word]

Some example decision programs we will
need:

Suggestion: fill in this table interactively

Suggestion: fill in this table interactively

Definition of yesOnString.py

Suggestion: fill in this table interactively

Solutions for yesOnString.py:

Definition of yesOnSelf.py

Suggestion: fill in this table interactively

Solutions for yesOnSelf.py:

notYesOnSelf.py reverses yesOnSelf.py

Suggestion: use the earlier results to fill in the
bottom table interactively

Solutions for yesOnSelf.py and notYesOnSelf.py :

No output is
correct
here…

… therefore, notYesOnSelf.py cannot exist!

If yesOnString.py existed, we could create
notYesOnSelf.py

Therefore, yesOnString.py can’t exist either

1. Assume yesOnString.py exists
2. Create notYesOnSelf.py as on

previous slide (and summarized
here)

3. This contradicts the impossibility
of notYesOnSelf.py

Proof:

By combining many tricks into one program, a
much briefer proof is possible

1. Assume yesOnString.py exists
2. Create weirdYesOnString.py as above
3. Observe that weirdYesOnString.py produces a

contradiction when given itself as input (it outputs “yes” if
and only if it outputs “no”)

Proof that yesOnString.py doesn’t exist:

Similar reasoning shows that no program can
correctly predict, for all possible inputs, whether
other programs will crash

1. Assume crashOnString.py exists
2. Create weirdCrashOnSelf.py as

shown
3. Observe that weirdCrashOnSelf.py

produces a contradiction when
given itself as input (crashes if and
only if it doesn’t crash)

Proof that crashOnString.py
doesn’t exist:

Be careful to interpret the “impossibility of
bug-finding programs” correctly

• It is true that no program P can correctly predict, for all programs Q,
whether Q will crash

• However, P might work correctly on many inputs

• Software companies and academic researchers invest great effort in
doing exactly this: developing programs P that work efficiently and
correctly on useful classes of software

Many other ideas from theoretical computer
science can be taught using real computer
programs

Examples:
• Universal computation
• Non-decision programs
• Complexity theory
• Gödel’s incompleteness theorem

Universal Python program

Use non-decision problems for better learning
outcomes

Traditional (decision) Practical (nondecision)

HamCycle

Does this graph have a
Hamilton cycle?

e.g. “a,b b,c c,a”↦ “yes”

Please give me a Hamilton cycle
of this graph.

e.g. “a,b b,c c,a”↦ “a,b,c”

Factor

Does this integer have a
nontrivial factor?

e.g. “51295697”↦ “yes”

Please give me a nontrivial
factor of this integer.

e.g. “51295697”↦ “8779”

Prove results in complexity theory

Example: this program provides a proof that we can’t determine in sub-
exponential time whether or not a program requires super-exponential
time

We can even prove Gödel’s first
incompleteness theorem!

An ASCII string representing a statement in number
theory that is true but unprovable!

That sounds interesting.
How can I learn CS theory
using real computer
programs?

Answer: There is a new text book from
Princeton University Press that takes this
approach:

What Can Be Computed?: A Practical
Guide to the Theory of Computation

27

Also, there’s a SIGCSE paper: “Strategies for basing the CS
theory course on non-decision problems.” In Proc. ACM
SIGCSE, pp521-526, 2018.

