
Practical approaches to teaching the
CS theory module:

nondecision problems and real computer programs

John MacCormick

Dickinson College and UEA School of Computing Sciences

Overview

1. Main talk (practical approaches to the CS theory module)
• About 35 minutes; real-time questions and interaction are welcomed

2. Other interests (hope to pursue some of these in the next two
years)
• About 5 minutes: computer vision, machine learning, distributed systems, CS

education, public understanding of computer science

3. Questions and discussion

Understanding the audience

• As an undergraduate, did you:
• Take a module that emphasized the distinction between polynomial time and

exponential time algorithms (more formally, P vs EXP)?

• Take a module that explored NP and NP-completeness?

• Take a module that discussed the equivalence, in terms of time complexity, of
all “reasonable” computational models (up to polynomial factors)?

• Take a module that covered undecidability, including proofs that certain
problems (e.g. the halting problem) are undecidable?

Understanding the audience, part II

• As an instructor, have you:
• Taught a module that emphasized the distinction between polynomial time

and exponential time algorithms (more formally, P vs EXP)?

• Taught a module that explored NP and NP-completeness?

• Taught a module that discussed the equivalence, in terms of time complexity,
of all “reasonable” computational models (up to polynomial factors)?

• Taught a module that covered undecidability, including proofs that certain
problems (e.g. the halting problem) are undecidable?

The CS “theory” module? What theory
module?
• Most computer science programs in the UK and US offer a “theory”

module
• many require it

• Typical topics drawn from:
• automata theory (dfas, pdas, regular grammars, cfgs, Turing machines)

• computability theory (existence of undecidable problems e.g. halting
problem, Turing reductions, Rice’s theorem)

• complexity theory (P, NP, EXP, NP-completeness, Cook-Levin theorem,
polynomial time reductions)

• Sometimes the complexity theory is included as part of an advanced
algorithms module

High-level point of the talk: the theory module can
be taught in a practical and accessible way

• new undergraduate textbook from Princeton
University Press, available February 2018

• Key features:
• Python programs as the main

computational model
• Focuses on nondecision problems

What Can Be Computed?

A Practical Guide to the Theory of Computation

Technical content of
today’s talk

vapourware version of front cover
(Erik Demaine origami)

Next few slides: informal overview of the key
distinction between decision and nondecision
problems

Which is more “useful”: program A or program B?

Input to both programs is a roadmap and a list of cities:

Program A outputs{
“yes”

if there’s a driving route
that visits each city and
takes less than 100 hours

“no” otherwise

Program B outputs{
a description of a
suitable route

if there’s a driving route
that visits each city and
takes less than 100 hours

“no” otherwise

Input:

Output:

© OpenStreetMap contributors

Which is more relevant for teaching: program A or program B?

Program A outputs{
“yes”

“no”

Program B outputs{
a description of a
suitable route

“no”

Which is more relevant for teaching: program A or program B?

Program A outputs{
“yes”

“no”

Program B outputs{
a description of a
suitable route

“no”

• Decision problem.

• Nondecision problem.

Which is more relevant for teaching: program A or program B?

Program A outputs{
“yes”

“no”

Program B outputs{
a description of a
suitable route

“no”

• Decision problem.
• Existing theory-of-computation

modules usually focus on decision
problems.

• Nondecision problem.

Which is more relevant for teaching: program A or program B?

Program A outputs{
“yes”

“no”

Program B outputs{
a description of a
suitable route

“no”

• Decision problem.
• Existing theory-of-computation

modules usually focus on decision
problems.

• Nondecision problem.

• This talk points to a way to teach the theory-of-computation module using
nondecision problems.

• Students may achieve better learning because the content is perceived as
relevant and practical.

We consider only a novice audience

• Novice audience ≡ undergraduate students who are seeing
computability and complexity theory for the first time

• Experienced practitioners know that decision programs can often be
converted to equivalent non-decision programs with only a
logarithmic increase in running time.

• Therefore, experienced practitioners don’t care if we restrict
attention to decision problems

• But for the novice audience, a program that outputs only a single bit
may appear abstruse, irrelevant, and impractical

Advantages of decision problems Advantages of nondecision problems

Some definitions and proofs are more concise Solutions are perceived as more meaningful and
useful by the novice audience

Almost all existing literature focuses on decision
problems

Sometimes, the nondecision variant of a
problem has important special properties (e.g.
factoring)

Conclusion:
• No clear-cut winner.
• We recommend using nondecision problems for most of the module, then

transitioning to decision problems for advanced topics. Specifically:
• Nondecision problems for decidability, P, EXP, and NP
• Decision problems for NP-completeness

The talk could end here. The remainder provides additional detail.

Conclusion: For the novice audience, start the
module with nondecision problems

Remainder of the talk

1. Empirical evidence of student perceptions favoring nondecision
problems

2. Technical details of how to teach the content using nondecision
problems
a) Definitions, including formal languages vs computational problems

b) Computability

c) Complexity

A survey of computer science students
gathered empirical evidence
• 41 computer science students given descriptions of four computer

programs
• The programs solve decision and non-decision variants of two different

problems (TSP and knapsack)

• rate “usefulness” from 1 (extremely useful) to 5 (not at all useful)

Programs that solve nondecision problems are
perceived as much more “useful” by the novice
audience

• The difference has overwhelming statistical significance
• Wilcoxon signed-rank test has 𝑝 < 10−11

• The effect size is also substantial
• Additional tests show the effect size exceeds difference between “very useful”

and “mildly useful”

Educational theory implies that perceived
usefulness will lead to improved outcomes

• Education researchers have demonstrated that effectiveness of
learning is enhanced when concepts are perceived as useful or
applicable
• See e.g. L. D. Fink, Creating significant learning experiences: An integrated

approach to designing college courses (2013)

• Therefore, we conclude the use of nondecision problems in the CS
theory course should improve learning outcomes

We have not attempted to measure improved learning
outcomes directly. I welcome suggestions on how to
do that!

Remainder of the talk

1. Empirical evidence of student perceptions favoring nondecision
problems

2. Technical details of how to teach the content using nondecision
problems
a) Definitions, including formal languages vs computational problems

b) Computability

c) Complexity

Details of the traditional approach
• alphabet ≡ finite set of symbols, denoted Σ

• string ≡ finite sequence of symbols

• set of all possible strings on Σ is denoted Σ∗

• language or formal language ≡ subset of Σ∗

• Given Turing machine 𝑀 with input string 𝑠, we say
• 𝑀 accepts 𝑠 if it terminates in an accepting state

• 𝑀 rejects 𝑠 if it terminates in any other state

• but remember the machine may not terminate, so it could neither accept nor
reject

• Machine 𝑀 decides language 𝐿 if
• 𝑀 accepts all 𝑠 ∈ 𝐿 and rejects all 𝑠 ∉ 𝐿

so it had better terminate on all inputs!

What is the connection between “deciding a
language” and “solving a problem”?
• For decision problems, these concepts are equivalent

• Example: Hamilton cycle
• asks the yes/no question “does this graph have a Hamilton cycle?”

• e.g. the string 𝑠 = “a,b b,c c,a” is a positive instance,

but 𝑠′ = “a,b b,c” is a negative instance

• Let language 𝐿 be the set of strings that are positive instances

• Then a Turing machine that decides 𝐿 implicitly answers the
question “does this graph have a Hamilton cycle?”

𝐷𝐿 = “is string 𝑠 in language 𝐿?”

𝐿𝐷 = set of strings that are positive instances of 𝐷

Details of the traditional approach
• alphabet ≡ finite set of symbols, denoted Σ

• string ≡ finite sequence of symbols

• set of all possible strings on Σ is denoted Σ∗

• language or formal language ≡ subset of Σ∗

• Given Turing machine 𝑀 with input string 𝑠, say
• 𝑀 accepts 𝑠 if terminates in special accepting state

• 𝑀 rejects 𝑠 if terminates in any other state

• but remember the machine may not terminate, so it could neither accept nor
reject

• Machine 𝑀 decides language 𝐿 if
• 𝑀 accepts all 𝑠 ∈ 𝐿 and rejects all 𝑠 ∉ 𝐿

Key recommendation: instead of formal
language, use computational problem

• A computational problem (which may or may not be a decision
problem) is a function 𝐹, mapping ASCII strings to sets of ASCII
strings.

• If 𝐹 𝑥 = {𝑠1, 𝑠2, … }, we call {𝑠1, 𝑠2, … } the solution set for 𝑥, and
each 𝑠𝑖 is a solution for 𝑥.

• If 𝐹 𝑥 = {“no”}, then 𝑥 is a negative instance of 𝐹; otherwise 𝑥 is a
positive instance.

“Deciding a language” vs “solving a problem”

• Computer program 𝑃 solves the computational problem 𝐹 if 𝑃(𝑥) ∈
𝐹(𝑥) for all 𝑥. That is, the program always terminates and outputs a
correct solution.

• Contrast with: Turing machine 𝑀 decides language 𝐿 if 𝑀 accepts all
𝑠 ∈ 𝐿 and rejects all 𝑠 ∉ 𝐿

Helpful examples of computational problems:
HamCycle and Factor

Traditional (decision) Practical (nondecision)

HamCycle

Does this graph have a
Hamilton cycle?

e.g. “a,b b,c c,a”↦ “yes”

Please give me a Hamilton cycle
of this graph.

e.g. “a,b b,c c,a”↦ “a,b,c”

Factor

Does this integer have a
nontrivial factor?

e.g. “51295697” ↦ “yes”

Please give me a nontrivial
factor of this integer.

e.g. “51295697” ↦ “8779”

Remainder of the talk

1. Empirical evidence of student perceptions favoring nondecision
problems

2. Technical details of how to teach the content using nondecision
problems
a) Definitions, including formal languages vs computational problems

b) Computability

c) Complexity

Computability replaces decidability

• The notion of computable function is well known, but here we
generalize to the notion of computable problem:
• 𝐹 is computable if there exists a Python program 𝑃 that computes 𝐹

• i.e. require 𝑃(𝑥) ∈ 𝐹(𝑥) for all 𝑥 — but for given 𝑥, 𝑃 needs to compute only
one solution, not all of them (e.g. find one Hamilton cycle, not all Hamilton
cycles)

• Uncomputable problems include old favorites such as the halting
problem, but also include interesting nondecision problems, e.g.
• can view Hilbert’s 10th problem as a nondecision problem: find integer

solutions to Diophantine equations

• given a program, how many steps will it execute before it halts?

Using real computer programs also helps
understanding

Example: A classical diagonalization + proof by contradiction
can be done explicitly in Python

Remainder of the talk

1. Empirical evidence of student perceptions favoring nondecision
problems

2. Technical details of how to teach the content using nondecision
problems
a) Definitions, including formal languages vs computational problems

b) Computability

c) Complexity

Need new notation to
generalize standard
complexity classes

P, NP, Exp generalize to
Poly, NPoly, Expo

Decision
problems
only

General
problems

Poly, NPoly, Expo yield pedagogical benefits

Examples:

• Students can write multithreaded programs that find factors,
Hamilton cycles, etc. in nondeterministic polynomial time
• Leads to concrete experience of the power of nondeterminism

• The impact of complexity theory on cryptography is obvious to the
novice audience
• No polynomial time algorithm for finding factors is known

• But the AKS algorithm determines the existence of a factor in polynomial
time! So in the decision framework, it’s hard to make the link to cryptography.

The generalization of verifier presents some
interesting challenges and opportunities

• The definition involves multiple
conditions and quantifiers

• The definition separates the
proposed solution 𝑠 and any
required “hint” ℎ
• Contrast this with the traditional

approach, where 𝑠 and ℎ are
incorporated into a single string 𝑐
called the witness or certificate

• It can be difficult for a novice
audience to interpret the certificate 𝑐

We recommend the traditional approach to
polynomial time reductions, with one small tweak

• As with the strong majority of other treatments, stick with Karp
reductions (also known as mapping reductions or many-one
reductions)

• One small generalization: can reduce from decision problems to
nondecision problems, without altering the definition
• Leads to a nice definition of NP-hardness later

• In principle, can teach a more general approach, reducing nondecision
problems to nondecision problems
• Experiments led to some success, but on balance this is not recommended for

the novice audience

For NP-completeness, stay firmly within the
traditional realm
• It is possible to teach “NPoly-completeness,” but not recommended

• Even while restricting to decision problems, the benefits of using
nondecision problems earlier in the course are felt:
• The practical impacts of routing, scheduling and knapsack problems are

obvious

• Holistic discussions of “P versus NP” have a more practical flavour

Ten CS theory textbooks
Mention FP, FNP;

Define and/or focus on
nondecision problems

Karp
reductions

Sipser (2013) Introduction to the Theory of Computation  

Linz (2011) An Introduction to Formal Languages and Automata  

Hopcroft, Motwani and Ullman
(2006)

Introduction to Automata Theory, Languages, and
Computation

 

Rich (2008)
Automata, Computability and Complexity: Theory
and Applications

 

Davis, Sigal and Weyuker (1994)
Computability, Complexity, and Languages:
Fundamentals of Theoretical Computer Science

 

Lewis and Papadimitriou (1997) Elements of the Theory of Computation  

Papadimitriou (1994) Computational Complexity  

Goldreich (2010)
P, NP, and NP-Completeness: The Basics of
Computational Complexity

 

Arora and Barak (2009) Computational Complexity: A Modern Approach  

Moore and Mertens (2011) The Nature of Computation  

Related work

• Focus on nondecision problems
• Goldreich, On Teaching the Basics of Complexity Theory (2006) + books (2008,

2010); Mandrioli (1982)

• Interactive automata software tools e.g. JFLAP, DEM
• Chesñevar et al. (2003); Rodger et al. (2006, …);

• “NP-completeness for all”
• Crescenzi et al. (2013); Enström and Kann (2010); Lobo and Baliga (2006)

Summary: The CS theory course can be made
practical and accessible
• Key ideas: focus on nondecision problems, use real computer

programs

• Two main components of today’s talk:
• Survey of CS students shows they perceive nondecision problems as more

useful; educational theory implies this leads to better learning outcomes

• Presented definitions and techniques useful for achieving this with a novice
audience

• Approach has been refined over four years’ experimentation in
classroom; details appear in forthcoming textbook

Overview

1. Main talk (practical approaches to the CS theory module)
• About 35 minutes; real-time questions and interaction are welcomed

2. Other interests (hope to pursue some of these in the next two
years)
• About 5 minutes: computer vision, machine learning, distributed systems, CS

education, public understanding of computer science

3. Questions and discussion

Do we live in an age of algorithms?

0

50

100

150

200

250

2000 2002 2004 2006 2008 2010 2012 2014 2016

Mentions of "algorithm" in the New York Times

Public understanding of computer science

Princeton University Press (2012)

Computer vision and machine learning

EMMCVPR (2013)

Springer (2002)

Distributed systems

ACM Trans. Storage (2008)

CS education

ACM Trans. Computing Education (to appear, pending final review)

Overview

1. Main talk (practical approaches to the CS theory module)
• About 35 minutes; real-time questions and interaction are welcomed

2. Other interests (hope to pursue some of these in the next two
years)
• About 5 minutes: computer vision, machine learning, distributed systems, CS

education, public understanding of computer science

3. Questions and discussion

+ thank you for welcoming me into the
School of Computing Sciences, and thanks
for listening today!

