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What is the CS “theory course”?

Usually covers some or all of: 

• automata theory 
• finite automata, context free languages, Turing machines

• computability theory 
• undecidability of halting problem, Rice’s Theorem

• complexity theory 
• P, NP, NP-completeness, Cook-Levin theorem
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How can we make the theory course more 
accessible, more practical, and less intimidating?

Previous work has made substantial strides in this direction:

• interactive automata software tools such as JFLAP and DEM
• Chesñevar et al (2003), Rodger et al (2006, 2009, etc.)

• “NP-completeness for all”
• Crescenzi (2013), Enstrom (2010), Lobo (2006)

• Different theoretical model
• Mandrioli (1982), Goldreich (2006, 2010) Today’s talk
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How can we make the theory course more 
accessible, more practical, and less intimidating?

• Use nondecision problems as the primary paradigm
• Contrasts with traditional decision problem paradigm

• Use real computer programs as the primary computational model
• Contrasts with traditional use of Turing machines

Main emphasis of the paper

Also important (see the book)
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A long-term vision for the theory course

• Make it more accessible and more practical

• Teach it to a wider range of undergraduates in more institutions

• Place it earlier in the curriculum with fewer prerequisites

• How?
• Use nondecision problems

• Use real computer programs
Next: explain what this means
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Which is more “useful”: program A or program B?

Input to both programs is a roadmap and a list of cities:  

Program A outputs{
“yes”

if there’s a driving route 
that visits each city and 
takes less than 100 hours

“no” otherwise

Program B outputs{
a description of a 
suitable route

if there’s a driving route 
that visits each city and 
takes less than 100 hours

“no” otherwise

Input:

Output:

© OpenStreetMap contributors
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Which is more relevant for teaching: program A or program B?

Program A outputs{
“yes”

“no”

Program B outputs{
a description of a 
suitable route

“no”
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Which is more relevant for teaching: program A or program B?

Program A outputs{
“yes”

“no”

Program B outputs{
a description of a 
suitable route

“no”

• Decision problem. 

• Nondecision problem. 
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Which is more relevant for teaching: program A or program B?

Program A outputs{
“yes”

“no”

Program B outputs{
a description of a 
suitable route

“no”

• Decision problem. 
• Existing theory-of-computation 

courses usually focus on decision 
problems.

• Nondecision problem. 
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Which is more relevant for teaching: program A or program B?

Program A outputs{
“yes”

“no”

Program B outputs{
a description of a 
suitable route

“no”

• Decision problem. 
• Existing theory-of-computation 

courses usually focus on decision 
problems.

• Nondecision problem. 

• This talk points to a way to teach the theory-of-computation course using 
nondecision problems and real computer programs. 

• Students may achieve better learning because the content is perceived as 
relevant and practical. 10



We consider only a novice audience

• Novice audience ≡ undergraduate students who are seeing 
computability and complexity theory for the first time

• Experienced practitioners know that decision programs can often be 
converted to equivalent non-decision programs with only a 
logarithmic increase in running time.

• But for the novice audience, a program that outputs only a single bit 
may appear abstruse, irrelevant, and impractical
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Programs that solve nondecision problems are 
perceived as much more “useful” by the novice 
audience

• The difference has overwhelming statistical significance and large effect 
size

• Perceived usefulness translates to better learning outcomes (Fink 2013)

Survey of undergraduates 
compared decision and 
nondecision variants of 
TSP and knapsack 
problems
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OK, we need to use nondecision problems. 
But how do we do that?
• Answer: adjust certain definitions

• A brief example is shown next

• Please see the paper for details
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Example of a technical detail: computational 
problems

• A computational problem (which may or may not be a decision 
problem) is a function 𝐹, mapping ASCII strings to sets of ASCII 
strings.

• If 𝐹 𝑥 = {𝑠1, 𝑠2, … }, we call {𝑠1, 𝑠2, … } the solution set for 𝑥, and 
each 𝑠𝑖 is a solution for 𝑥. 

This allows us to talk about “solving a problem” instead of “deciding a language”:

• Computer program 𝑃 solves the computational problem 𝐹 if 𝑃(𝑥) ∈ 𝐹(𝑥) for all 𝑥.

• Contrast with: Turing machine 𝑀 decides language 𝐿 if 𝑀 accepts all 𝑠 ∈ 𝐿 and 
rejects all 𝑠 ∉ 𝐿
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Examples of “solving a problem” instead of 
“deciding a language”

Traditional (decision) Practical (nondecision)

HamCycle

Does this graph have a 
Hamilton cycle?

e.g. “a,b b,c c,a”↦ “yes”

Please give me a Hamilton cycle 
of this graph.

e.g. “a,b b,c c,a”↦ “a,b,c”

Factor

Does this integer have a 
nontrivial factor?

e.g. “51295697” ↦ “yes”

Please give me a nontrivial 
factor of this integer.

e.g. “51295697” ↦ “8779”
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Other examples of technical details

• To incorporate nondecision problems, we need generalizations of 
traditional complexity classes, e.g.:
• P becomes Poly

• NP becomes NPoly

• The generalized definition of a verifier offers new pedagogical 
opportunities:
• The traditional role of the certificate is separated into two clearer, 

independent notions: the solution and the hint
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How can we make the theory course more 
accessible, more practical, and less intimidating?

• Use nondecision problems as the primary paradigm
• Contrasts with traditional decision problem paradigm

• Use real computer programs as the primary computational model
• Contrasts with traditional use of Turing machines

Main emphasis of the paper

Also important (see the book)
Why? As Turing himself wrote (1936):

This proof, although perfectly sound, has the disadvantage that it may leave 
the reader with a feeling that “there must be something wrong”. 17



Using real computer programs permits 
interactive experimentation by students

Example 1: A classical diagonalization + proof by contradiction can 
be done explicitly in Python
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Using real computer programs permits 
interactive experimentation by students

Example 2: a “universal program” is much simpler than a universal 
Turing machine.
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That sounds interesting. But 
how can I actually teach a 
theory course using 
nondecision problems and real 
computer programs?

• Answer: There is a new text book from 
Princeton University Press that takes this 
approach
• What Can Be Computed?:  A Practical Guide to 

the Theory of Computation

• Available Spring 2018

• Visit the Princeton University Press booth or 
email me for more details
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Conclusion: a long-term vision for the theory 
course
• Make it more accessible and more practical

• Teach it to a wider range of undergraduates in 
more institutions

• Place it earlier in the curriculum with fewer 
prerequisites

•How?
• Use nondecision problems
• Use real computer programs

•Thanks for listening!
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