
Strategies for basing the CS theory
course on non-decision problems…

… and using real computer programs.

i.e. a practical approach to teaching the
CS theory course

John MacCormick

Dickinson College and

University of East Anglia School of Computing Sciences
1

What is the CS “theory course”?

Usually covers some or all of:

• automata theory
• finite automata, context free languages, Turing machines

• computability theory
• undecidability of halting problem, Rice’s Theorem

• complexity theory
• P, NP, NP-completeness, Cook-Levin theorem

2

How can we make the theory course more
accessible, more practical, and less intimidating?

Previous work has made substantial strides in this direction:

• interactive automata software tools such as JFLAP and DEM
• Chesñevar et al (2003), Rodger et al (2006, 2009, etc.)

• “NP-completeness for all”
• Crescenzi (2013), Enstrom (2010), Lobo (2006)

• Different theoretical model
• Mandrioli (1982), Goldreich (2006, 2010) Today’s talk

3

How can we make the theory course more
accessible, more practical, and less intimidating?

• Use nondecision problems as the primary paradigm
• Contrasts with traditional decision problem paradigm

• Use real computer programs as the primary computational model
• Contrasts with traditional use of Turing machines

Main emphasis of the paper

Also important (see the book)

4

A long-term vision for the theory course

• Make it more accessible and more practical

• Teach it to a wider range of undergraduates in more institutions

• Place it earlier in the curriculum with fewer prerequisites

• How?
• Use nondecision problems

• Use real computer programs
Next: explain what this means

5

Which is more “useful”: program A or program B?

Input to both programs is a roadmap and a list of cities:

Program A outputs{
“yes”

if there’s a driving route
that visits each city and
takes less than 100 hours

“no” otherwise

Program B outputs{
a description of a
suitable route

if there’s a driving route
that visits each city and
takes less than 100 hours

“no” otherwise

Input:

Output:

© OpenStreetMap contributors

6

Which is more relevant for teaching: program A or program B?

Program A outputs{
“yes”

“no”

Program B outputs{
a description of a
suitable route

“no”

7

Which is more relevant for teaching: program A or program B?

Program A outputs{
“yes”

“no”

Program B outputs{
a description of a
suitable route

“no”

• Decision problem.

• Nondecision problem.

8

Which is more relevant for teaching: program A or program B?

Program A outputs{
“yes”

“no”

Program B outputs{
a description of a
suitable route

“no”

• Decision problem.
• Existing theory-of-computation

courses usually focus on decision
problems.

• Nondecision problem.

9

Which is more relevant for teaching: program A or program B?

Program A outputs{
“yes”

“no”

Program B outputs{
a description of a
suitable route

“no”

• Decision problem.
• Existing theory-of-computation

courses usually focus on decision
problems.

• Nondecision problem.

• This talk points to a way to teach the theory-of-computation course using
nondecision problems and real computer programs.

• Students may achieve better learning because the content is perceived as
relevant and practical. 10

We consider only a novice audience

• Novice audience ≡ undergraduate students who are seeing
computability and complexity theory for the first time

• Experienced practitioners know that decision programs can often be
converted to equivalent non-decision programs with only a
logarithmic increase in running time.

• But for the novice audience, a program that outputs only a single bit
may appear abstruse, irrelevant, and impractical

11

Programs that solve nondecision problems are
perceived as much more “useful” by the novice
audience

• The difference has overwhelming statistical significance and large effect
size

• Perceived usefulness translates to better learning outcomes (Fink 2013)

Survey of undergraduates
compared decision and
nondecision variants of
TSP and knapsack
problems

12

OK, we need to use nondecision problems.
But how do we do that?
• Answer: adjust certain definitions

• A brief example is shown next

• Please see the paper for details

13

Example of a technical detail: computational
problems

• A computational problem (which may or may not be a decision
problem) is a function 𝐹, mapping ASCII strings to sets of ASCII
strings.

• If 𝐹 𝑥 = {𝑠1, 𝑠2, … }, we call {𝑠1, 𝑠2, … } the solution set for 𝑥, and
each 𝑠𝑖 is a solution for 𝑥.

This allows us to talk about “solving a problem” instead of “deciding a language”:

• Computer program 𝑃 solves the computational problem 𝐹 if 𝑃(𝑥) ∈ 𝐹(𝑥) for all 𝑥.

• Contrast with: Turing machine 𝑀 decides language 𝐿 if 𝑀 accepts all 𝑠 ∈ 𝐿 and
rejects all 𝑠 ∉ 𝐿

14

Examples of “solving a problem” instead of
“deciding a language”

Traditional (decision) Practical (nondecision)

HamCycle

Does this graph have a
Hamilton cycle?

e.g. “a,b b,c c,a”↦ “yes”

Please give me a Hamilton cycle
of this graph.

e.g. “a,b b,c c,a”↦ “a,b,c”

Factor

Does this integer have a
nontrivial factor?

e.g. “51295697” ↦ “yes”

Please give me a nontrivial
factor of this integer.

e.g. “51295697” ↦ “8779”

15

Other examples of technical details

• To incorporate nondecision problems, we need generalizations of
traditional complexity classes, e.g.:
• P becomes Poly

• NP becomes NPoly

• The generalized definition of a verifier offers new pedagogical
opportunities:
• The traditional role of the certificate is separated into two clearer,

independent notions: the solution and the hint

16

How can we make the theory course more
accessible, more practical, and less intimidating?

• Use nondecision problems as the primary paradigm
• Contrasts with traditional decision problem paradigm

• Use real computer programs as the primary computational model
• Contrasts with traditional use of Turing machines

Main emphasis of the paper

Also important (see the book)
Why? As Turing himself wrote (1936):

This proof, although perfectly sound, has the disadvantage that it may leave
the reader with a feeling that “there must be something wrong”. 17

Using real computer programs permits
interactive experimentation by students

Example 1: A classical diagonalization + proof by contradiction can
be done explicitly in Python

18

Using real computer programs permits
interactive experimentation by students

Example 2: a “universal program” is much simpler than a universal
Turing machine.

19

That sounds interesting. But
how can I actually teach a
theory course using
nondecision problems and real
computer programs?

• Answer: There is a new text book from
Princeton University Press that takes this
approach
• What Can Be Computed?: A Practical Guide to

the Theory of Computation

• Available Spring 2018

• Visit the Princeton University Press booth or
email me for more details

20

Conclusion: a long-term vision for the theory
course
• Make it more accessible and more practical

• Teach it to a wider range of undergraduates in
more institutions

• Place it earlier in the curriculum with fewer
prerequisites

•How?
• Use nondecision problems
• Use real computer programs

•Thanks for listening!

21

