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Abstract 

 

PathFinder in CUDA 

 

 
by 

James Doyle 

 

Image segmentation into superpixels is a common early step in computer vision 

algorithms.  Several algorithms already exist that produce good quality results.  PathFinder is 

a competing image segmentation algorithm that creates high quality superpixels at faster 

speeds.  Our goal is to transfer computation from the CPU to the GPU, which has the 

potential to execute parallel tasks much more efficiently.  We investigate CUDA, a freely 

available platform for programming GPUs, and learn what kinds of operations benefit most 

from this approach.  We find a 3 to 5 times speed up of the PathFinder algorithm overall, 

with an improvement of three orders of magnitude in some components of the algorithm. 
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Chapter 1 

Introduction 

 

1.1 The Performance of Superpixel Algorithms 

 A superpixel is a region of pixels in an image that share roughly similar properties, 

indicating that they likely represent part of a single object.  Before any intensive video or 

image processing, a superpixel algorithm can be used to divide the image into superpixels, 

thus simplifying any following tasks by reducing the number of objects to be analyzed or 

edited (Moore, Prince, Warrell, Mohammed & Jones, 2008).  My research will focus on the 

optimization of the PathFinder superpixel algorithm.  The primary objective of my research 

is to investigate opportunities for substantial performance increases through parallel 

computing on graphics processing units (GPUs), the powerful video cards attached to some 

computers.  

 Prof. John MacCormick, my honors advisor, has previously worked with students to 

compare the efficiency and quality of PathFinder with other established superpixel 

algorithms (Drucker, 2009), notably the Efficient Graph-Based Image Segmentation (EGBIS) 

algorithm (Felzenszwalb & Huttenlocher, 2004).  Thus, the concrete objective of this thesis is 

to compare the speed of PathFinder’s Java implementation to a new implementation of 

PathFinder on GPUs.  

 

1.2 Parallel Computing and CUDA 

 In this project, our goal was to shift as much of the computation from the computer's 

central processor (CPU) to the graphics processor (GPU), which has a multi-cored 
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architecture designed for parallel computing (Fung & Mann, 2008; Halfhill, 2008; Nyland, 

Harris & Prins, 2008).  Specifically, we investigated NVIDIA Corporation's Compute Unified 

Device Architecture (CUDA) which allows programmers to use a subset of the C 

programming language to implement “massive multithreading”: tens of thousands of threads 

concurrently executed by the GPU (Halfhill, 2008).  Every graphics card manufactured by 

NVIDIA in the last several generations is compatible with CUDA (NVIDIA Corporation, 

2009).  
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Chapter 2 

Background 

 

2.1 PathFinder and Other Image Segmentation Algorithms 

 PathFinder is one of many image segmentation algorithms.  They vary in method, 

quality, and efficiency.  PathFinder divides an image into superpixels by creating crossing 

paths between pixels with sufficient difference in color.  The resulting regions inside these 

paths are the superpixels.  First this is done with the original image so comparisons are made 

between horizontally adjacent pixels.  Then the image is transposed (the equivalent of a 90 

degree rotation), and adjacent pixels are again compared, though these are the vertically 

adjacent pairs.   

Before the algorithm compares the adjacent pixels, a convolution filter is applied to 

the entire image, which makes each pixel the “average” of its neighbors.  This is a common 

initial step in computer vision algorithms that slightly blurs the image, removing anomalies 

and providing more reliable results.  PathFinder’s convolution operation smoothes the image 

by assigning the average of the red, green, and blue (RGB) values of each pixel within a 

small radius to the RGB values of the target pixel.  In the actual comparison of adjacent 

pixels, the differences in red, green, and blue values between the two convolved pixels are 

summed.   

Utilizing the resulting data – dubbed edge strengths – grid paths are calculated 

through the image along the heaviest edge strengths, dividing it into many regions.  EGBIS 

creates a similar result, though instead of drawing paths through the image, the algorithm 

only compares adjacent pixels to each other to determine if they belong in the same segment 
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(Felzenszwalb, & Huttenlocher, 2004).   

A disadvantage of the superpixel approach is the irregularity and the loss of the grid-

like properties that are inherent with a pixel representation. The Superpixel Lattice algorithm 

has attempted to address this shortcoming with a regular grid of superpixels that forces the 

superpixels into a more computationally friendly arrangement (Moore, Prince, Warrell, 

Mohammed & Jones, 2008).  However, this approach has its own disadvantages, in particular 

that it forces an artificial structure on an image that does not necessarily contain any. 

 Of these algorithms, EGBIS is considered to offer the best quality segmentation based 

on the benchmarks of explained variation and mean accuracy.  Explained variation is a 

human-independent metric that evaluates the quality of the segmentation by comparing each 

individual pixel to the color values of the superpixel it has become part of.  Mean accuracy 

uses human-defined examples to assess how many of the pixels were assigned to the correct 

region (Moore, Prince, Warrell, Mohammed & Jones, 2008; Drucker, 2009).  Based on these 

two measures, PathFinder produces slightly lower quality segmentations.  However, 

PathFinder has been shown to be over an order of magnitude faster than the EGBIS 

algorithm, with the advantage increasing with the size of the image, an important 

consideration for any real-time application (Drucker, 2009). 

 

2.2 NVIDIA's CUDA Platform and Computer Vision 

NVIDIA introduced CUDA in February 2007 to provide a standardized framework 

for outsourcing computational tasks to the GPU.  It uses C for CUDA, which is C with some 

extensions provided by NVIDIA.  Thus, programming for CUDA requires installing the 

correct drivers, an SDK, and a toolkit, while running CUDA software requires the correct 
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drivers and a new enough GPU.  Specifically, any NVIDIA GPU in the GeForce 8xxx series 

or newer is CUDA-enabled.  The most recent releases of the CUDA SDK added support for 

Mac OS X (NVIDIA Corporation, 2009).   

 CUDA is best suited to tasks that are highly parallelizable.  These typically involve 

algorithms that conduct a large number of independent and simple (or at least similar) 

calculations.  For example, an ideal candidate for CUDA acceleration is an astrophysical 

simulation of n-bodies interacting with each other.  This requires a brute-force all-pairs 

analysis to exactly determine each object’s motion.  These calculations can be threaded so 

that thousands of these pairs are analyzed at the same time using a GPU, instead of one, two 

or four at a time with an advanced CPU (Nyland, Harris & Prins, 2008). 

We are not the first to attempt to apply the GPU and CUDA to the field of computer 

vision.  In fact, more than one pre-CUDA framework was created specifically to enable 

computer vision work on the GPU (Babenko & Shah, 2008; Alluse, Horain, Agarwal & 

Saipriyadarshan, 2008).  Since its release, CUDA has been shown to be a suitable platform 

for the development of efficient computer vision algorithms (Fung & Mann, 2008). 
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Chapter 3 

Methods 

 

3.1 Hardware Requirements and Experiment Environment 

Before significant work could begin on the PathFinder project, we needed to 

determine an appropriate test system and procure one.  Our sole requirement was an NVIDIA 

GPU from the GeForce 8xxx generation or newer.  However, this elicited several other sub-

requirements of the system to support this device.  First, these cards interface with the 

computer through a PCI-Express slot on the motherboard, which replaced Accelerated 

Graphics Port (AGP) technology as the industry standard several years ago.  Second, the 

system needed a chassis that was physically large enough to house the new GPU, as most 

high-end cards are full width with a dedicated cooling system that occupies as much space as 

a second PCI card.  Third, because the power requirements for a high-end GPU and its 

cooling system can far exceed even the CPU, a power supply (PSU) with enough capacity is 

a necessity.   

Fortunately, we were able to locate a machine that was high-end when it was 

manufactured several years ago.  The model was a Dell XPS 600, originally intended for 

consumer gaming, which had recently been replaced in a language lab on campus.  Its 

configuration was satisfactory to the extent that the only part requiring replacement was the 

GPU itself.  For this we chose the NVIDIA GeForce GTX 275.  Detailed specifications of the 

system and the graphics card are provided in Tables 3.1 and 3.2. 
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Table 3.1: Specifications for our testbed system. 

 

CPU Intel Pentium D 3.2 GHz 

Motherboard NVIDIA nForce4 SLI Intel Edition 

Memory 2 GB (2x1 GB) 533 MHz 

PSU 650 Watts 

GPU NVIDIA GeForce GTX 275 

OS Windows XP Pro SP2 32-bit 

 

Table 3.2: Specifications for the NVIDIA GeForce GTX 275 

and CUDA. 

 

Core Clock 633 MHz 

Stream Processors 240 Cores 

Memory Clock 2268 MHz 

Memory Size 896 MB DDR3 

Minimum PSU Capacity 550 Watts 

Driver Version 190.38 

CUDA Version 2.3 

 

 

3.2 Optimization of PathFinder 

Our approach was to integrate CUDA accelerated code into the pre-existing Java code 

of the PathFinder project.  We accomplished this with the Java Native Interface (JNI), which 

enables Java code to utilize libraries and code from different languages, including C.   

We determined that four subroutines in the PathFinder algorithm were highly 

parallelizable.  These included the previously mentioned tasks of image transposition, image 

convolution filtering, calculation of edge strengths, and calculation of grid paths.  These 

components of PathFinder were chosen because each contains a simple operation that is 

executed on every pixel.  Because each operation is executed thousands of times, the 

improvement due to parallelization should be significant, and because each operation is 

simple, the penalty for using the slower processor core of the GPU should not be.  Thus we 
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identified which portions of the PathFinder algorithm are the best candidates for CUDA, and 

our task was to rewrite each of those portions as a function in C for CUDA, then call each 

function at the appropriate time using JNI.   

The multithreading process in C for CUDA is fairly straightforward.  First, we 

allocate sufficient memory on the GPU and copy the data to be manipulated into that space.  

Second, we write one piece of code called the “kernel” that instructs the processor how to 

perform the required task.  Finally, we implement in C the host function that runs the CUDA 

kernel with a designated number of threads, which split the sections of memory amongst 

themselves (NVIDIA Corporation, 2009).  

 

3.3 Anatomy of a CUDA Kernel 

 

 The example above is the transpose operation, which we will analyze to demonstrate 

a few of the unique aspects of a CUDA kernel.  In line 1 we see the __global__ qualifier, 

which declares the function to be a kernel, which can only be executed on the GPU.  odata 

and idata are each pointers to an array of integers.  In this case we are storing the two-

dimensional image as a one-dimensional array of integers.  The memory for these arrays has 

already been allocated in the GPU’s memory by the host C code and the idata is already 

filled with the original image data.  In lines 3 and 4 we declare two integers, xIndex and 

01:__global__ void transpose(int *odata, int *idata, int width, int height) 

02:{ 

03:   unsigned int xIndex = blockDim.x * blockIdx.x + threadIdx.x; 

04:   unsigned int yIndex = blockDim.y * blockIdx.y + threadIdx.y; 

05:    

06:   if (xIndex < width && yIndex < height) 

07:   { 

08:       unsigned int index_in  = xIndex + width * yIndex; 

09:       unsigned int index_out = yIndex + height * xIndex; 

10:       odata[index_out] = idata[index_in];  

11:   } 

12:} 
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yIndex, which represent the x and y coordinates of the pixel.  CUDA divides the data into 

blocks and then further splits those blocks into individual threads.  Each individual kernel is 

guaranteed access to its identifying information: which block and thread it is.  Thus we find 

the coordinate in each direction by multiplying the dimension of the block by the ID number 

of the current block, and finally adding the current thread ID number.  The if statement in 

line 6 prevents any addressing errors from halting the program.  In the remainder of the 

kernel we copy the data to the transposed position.  After this function completes and returns 

to the host code, the cudaThreadSynchronize() function forces the code to wait for 

all threads to complete, then we copy the data from the GPU’s memory back to the host. 

 

3.4 Testing Procedure 

Using System.nanoTime() method calls and the comparable timer functionality 

included in C for CUDA, we analyzed the performance of the original implementation of 

PathFinder and the most recent implementation, which outsources work to CUDA.  These 

tests were performed with a variety of test image resolutions: 192x144, 400x304, and 

512x480.  Each test was repeated five times and the mean of the five trials is the data 

presented.  We did not attempt any quality optimizations with regards to the produced 

segmentations, and thus do not need to perform quality-related analysis. 

For the sake of this study, we did not include time required by JNI operations or 

memory allocation and copying in our measurements.  This was a conscious decision to 

maintain the focus of our results on the advantages offered by CUDA instead of the 

disadvantages of JNI and an unoptimized implementation, which we will discuss in more 

depth in Chapter 5. 
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Chapter 4 

Results 

 

Through my initial analysis of the PathFinder algorithm, we determined how much 

processing time each step in the algorithm required.  Figure 4.1 depicts our findings. 

 

 
 

Figure 4.1: Each task performed by PathFinder algorithm, as 

percentage of runtime. 

 

Almost two-thirds of the running time is devoted to file system operations 

(loading/copying/saving the image) or drawing the paths on the image, each of which we 

consider trivial overhead for the purposes of our investigation.  This leaves the following four 
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tasks for our focus: performing an image transpose, applying a convolution filter, calculating 

edge strengths and calculating grid paths. 

 

 
 

Figure 4.2: Each improved task performed by PathFinder 

algorithm, as relative percentages of time saved. 

 

In practice, all four areas saw some runtime improvement and, with the exception of 

the grid paths calculation, the relative time savings was related to the amount of time 

originally required (Figure 4.2).  That is, because an image transpose originally required 

more time than the edge strength calculation, it also saved more time when ported to CUDA.   

The grid path calculation did not improve as much as the others, even though it used 

more runtime.  This is because the grid path calculation can not be executed on each pixel of 

the image concurrently, unlike the transpose, convolution filter, or edge strength operations.  

The calculation at each scanline (the horizontal or vertical line of pixels being analyzed) 

depends on the results of the scanlines above or below it.  Furthermore, the pixels at the edge 

of the image are special cases that had to be handled outside of CUDA in the host C code.  

Thus, instead of the simple process described in section 3.2 in which memory is allocated, 

copied, and returned once and the kernel is called once, memory was copied and returned and 
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the kernel called as many times as there were scanlines of pixels in the image to be analyzed.  

This has the dual effect of creating unavoidable overhead and reducing the potential for 

optimization, which leads to the result shown in Figure 4.3. 

 

Figure 4.3: Time required to execute the grid paths calculation 

by CUDA and by the original Java code. 

 

Overall, we achieved a significant runtime improvement over the original Java 

implementation.  Including the grid paths calculation, this advantage is small (Figure 4.4).  

However, when we disregard the grid paths calculation the runtime improves by a factor of 

100 (Figure 4.5). 
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Figure 4.4: Summation of time required to execute the re-

implemented segments of PathFinder by CUDA and by the 

original Java code.  Includes the grid paths calculation. 

 

 
 

Figure 4.5: Summation of time required to execute the re-

implemented segments of PathFinder by CUDA and by the 

original Java code.  Does not include the grid paths calculation.  

Note the logarithmic scale of the y-axis. 

 

Yet another way to see the difference before and after optimizations is to stack each 

part of the algorithm on top of the other.  The taller the stack, the more runtime each segment 
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requires.  As you can see in Figure 4.6, the CUDA-optimized transpose, convolution filter, 

and edge strength operations are an order of magnitude faster than their unoptimized versions 

or the grid paths calculation.  With optimizations, all four parts of the algorithm are executed 

in the same or less time than the original transpose operation. 

 

Figure 4.6: Comparisons of runtime of each task in CUDA and 

before optimizations.  Note the CUDA executions of the edge 

strengths, convolution filter, and transpose operations are too 

fast to be visible on this timescale. 

 

With these improvements, the transpose, convolution filter, and edge strength 

calculations that originally accounted for 25% of the original algorithm’s runtime (see Figure 

4.1) are now less than 1% of the entire algorithm (Figure 4.7).  The grid paths calculation, 

though its runtime was improved, remains at 11%.  As the sample raw data in Table 4.1 

demonstrates, individual operation improvements of 400 times are possible.  Overall, we 
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achieved a speed up of over 100 times with fully parallelizable operations and a 30% speed 

improvement of the more complex grid paths calculation.  The result is a 3-5 times speed up 

across the four improved operations.   

 
 

Figure 4.7: Each task performed by PathFinder, as percentage 

of runtime post-CUDA enhancements. 

Table 4.1: Raw data from analysis of original Java PathFinder 

and PathFinder in CUDA.  Data collected with a 400x304 

resolution sample image.  All times in milliseconds. 

 

Task 

Original 

PathFinder 

CUDA-

Optimized 

Improvement 

Factor 

Difference 

load image 64.0 64.0   

copy image 52.7 52.1   

transpose image 43.1 0.11 406.9 43.0 

convolution filter 25.9 0.51 50.8 25.4 

calculate edge 

strengths 39.0 0.09 432.5 38.9 

calculate grid paths 51.7 37.6 1.38 14.2 

draw paths 7.6 7.8   

save image 158.0 166.7   

  

   

Total time 442.2 328.9 

 

121.5 
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Chapter 5 

Discussion and Future Work 

 

5.1 Success of Project 

 As a proof-of-concept, this project has been a great success.  We have shown that 

parallelizable code can be re-written to utilize an NVIDIA GPU via the CUDA platform with 

a significant performance advantage.  Our overall result of an improvement factor of 100 is 

in line with previous CUDA projects (NVIDIA Corporation, 2010).  We have also learned the 

best candidates for this process are simple code segments operating on a single block of 

memory.  More complex code segments or operations that require distinct memory fragments 

do not benefit as much from parallelism in CUDA. 

 

5.2 Limitations of the Java Native Interface 

 The JNI facilitated our study by allowing us to re-implement portions of the 

PathFinder algorithm to utilize CUDA within the time restrictions of this research project.  

The alternative approach would have been to re-write the entire algorithm, a lengthy and 

impractical task.  Given that the goal of our research is increased performance, we have 

learned JNI is not a practical solution as we move forward.   

 Throughout our research, our benchmarking timers constantly showed a discrepancy 

between the runtime of our C code and the host Java code that called it.  We identified this as 

overhead due to JNI.  As shown in Figure 5.1, this overhead would typically be many times 

the actual runtime of the CUDA operation, nullifying any performance gains.  At this time we 

see no means of circumventing this limitation of JNI, so a future step in the project will be 
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the complete removal of JNI.  To accomplish this, a complete re-implementation of the 

PathFinder algorithm will likely be required.  When we began this project our only option 

would have been a re-implementation in C, but a recent update to NVIDIA’S CUDA Toolkit 

has added C++ support (Ramey, 2010). Alternatively, there are several projects underway 

that could allow CUDA code to be called directly from Java (JCuda.org, 2010; Heusel, 

2010), in addition to the possibility that NVIDIA will add support for Java to CUDA in the 

future. 

 

Figure 5.1: The benchmarks of each subsection of the 

transpose operation on a sample 400x304 image.  The CUDA 

kernel, the sliver at the bottom, is the data presented in this 

paper.  The CUDA memory operations are necessary, though 

unoptimized.  The JNI operations and overhead will be 

removed entirely in future work.  
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5.3 Future Work 

 In addition to the removal of JNI, there exist more opportunities to improve the 

performance of PathFinder.  The CUDA memory operations (see Figure 5.1) are likely 

candidates for optimization with the use of techniques such as memory coalescing.  Further 

work must also be done to determine the best approach to optimizations of the grid paths 

calculation.  While the current implementation is a slight improvement, there may be an 

alternative implementation that would benefit more from CUDA acceleration.  There also 

remains the potential for improvements in the quality of the PathFinder algorithm.  Finally, it 

would be interesting to investigate the performance and quality differences of a re-

implemented PathFinder and the original EGBIS algorithm, similar to the recent work by 

Drucker (2009) with the original PathFinder and a re-implemented EGBIS algorithm. 

The ultimate goal for the PathFinder algorithm remains to increase its performance 

until it can be utilized to conduct real-time analysis of video.  At a rate of 20 frames per 

second, this allows 50 ms for each frame.  Disregarding the question of file system 

operations, our work on this project has already reached this target, even for our largest test 

image (see Figure 4.6).  Further improvements, as discussed above, will increase the 

practicality of this goal. 
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