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Abstract 

 

Recapitulation of Leukemia Cell Gene Clusters using Transcription 

Factor Binding Sites as Indicators of Gene Expression 
by 

Philip Hubert 

 

 

 This study aimed to recapitulate gene clusters derived from real gene expression 

data from a previously conducted microarray analysis at Dickinson College. This was 

done by finding matches for specific transcription factors in the DNA sequences of 748 

genes' promoter region and clustering the genes based upon the number of matches using 

multiple clustering algorithms in the Cluster 3.0 software as well as the GenePattern 

clustering modules. First, the number of occurrences of each of the transcription factors 

in the promoter region was used as a predictor of the gene’s expression level. Then 

multiple sets of transcription factor matches were used to generate new clusters using 

predominately k means, Self-Organized Maps (SOMs), and some hierarchical clustering. 

For each set of gene clusters that was produced, a pairwise comparison of all of the genes 

was done to determine if they were in the same cluster for both the original expression 

data cluster set and the new cluster set. Using this analysis, a percentage of maintained 

cluster relationships was then calculated as a measure of the clustering model's success. 

 

 

 

 

 

 

 



2 

 

Chapter 1 

 

INTRODUCTION AND BACKGROUND 
 

 

 

1.1. Project Explanation 

 

 The task of curing cancer has proven itself to be one that requires a wide array of 

approaches as well as a large amount of new research to better understand the genetic 

mechanisms that cause cancer.  Student researchers, including Natalie Stanley and 

Phoebe Oldach, working under Professors Jeffrey Forrester and Michael Roberts have 

previously generated data showing the amount of various proteins produced from the 

genes that encode those proteins for a particular type of leukemia cell.  These leukemia 

genes were then organized into groups called gene clusters based upon the amount of 

protein that each gene produced over a period of 24 hours.  The amount of protein 

produced from a gene is known as the gene expression level.   

 It is known that other environmental factors play into a gene’s expression level 

but in my research I worked to create an accurate method for predicting leukemia gene 

expression levels using only their relevant DNA sequences, specifically the strings of 

molecules that contain code for proteins (see Background for DNA information).  This 

goal would be achieved by generating groups/clusters of genes based upon a variety of 

scoring algorithms and comparing them with the clusters derived from the original gene 

expression data that is trusted to reflect how these genes actually operate. 

 When this research began it was thought to be novel, but recent investigation has 

shown that research done by Beer et al. and Elemento et al. (2004, 2007) has already 
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explored this topic and determined that the methods being analyzed here would not 

produce suitable results. Nonetheless, this research should be presented in order to 

support their statements that the methods explored are not able to handle the genetic 

complexities inherent in predicting gene expression from genetic sequences. Additionally, 

there is still a limited amount of work done on mammal genes as they have proved even 

harder to predict than original tests done on the genes of S. cerevisiae and C. elegans 

(Beer & Tavazoie, 2004; Hill, Hunter, Tsung, Tucker-Kellog, et al., 2000).  Clearly the 

research has wide implications but it will appeal particularly to experts in bioinformatics, 

biology, and possibly mathematics as it requires a particular level of genetic and 

bioinformatics knowledge to be fully understood.   

 

1.2. Background 

1.2.1. DNA 

 

  

 

 

 

 

  Figure 1.1: DNA is composed of two intertwining strands  

  in a double helix formation. 

 Deoxyribonucleic acid or DNA as it is more commonly known is a double helix 

strand that contains all the genetic information necessary to create and regulate organic 



4 

 

life.   The term “double helix” refers to the structure of DNA and as can be seen in Figure 

1.1, means it is made up of two long strands that spiral around each other, never touching 

but connected by chemical bonds in between them.  These chemical bonds exist between 

individual nucleotides, which are the building blocks of DNA and RNA (ribonucleic 

acid).  The nucleotides for DNA are Adenine, Guanine, Cytosine, and Thymine.  Adenine 

and Thymine are complementary pairs that join together, as are Cytosine and Guanine.  

These nucleotides join together in a specific sequence (not just the complementary pairs) 

to form a strand of DNA and this strand will join with another strand of DNA that is its 

complement (e.g. Cytosine on the first strand will join with Guanine on the second) in 

order to create a full double helix DNA.   

 

1.2.2. Transcription and Promoter Regions 

 Within these DNA sequences there are regions that contain the code for the 

creation of proteins.  The sequence of nucleotides (also known as base pairs) in a protein 

coding region are “read” by a structure called RNA polymerase which creates a 

complementary strand of nucleotides known as mRNA (messenger RNA) that will be 

used later to create the actual proteins.  The RNA polymerase binds to a particular site on 

the DNA strand known as the Transcription Start Site (TSS) and moves downstream from 

the TSS making mRNA.  This process is known as transcription and in order for the RNA 

polymerase to be able to engage in this process it must have assistance finding the TSS as 

well as the binding to the TSS.   
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Figure 1.2: RNA Polymerase binding to a promoter region and 

engaging in protein transcription. 

 

 The promoter region is the area lying upstream of the TSS (upstream is opposite 

the direction of transcription, downstream and upstream are relative terms) and plays a 

key role in the process of attracting the RNA polymerase and binding it to the TSS.  The 

promoter region contains sequences of nucleotides known as binding sites that provide 

locations for other molecules known as transcription factors to bind to. These 

transcription factors are what help the RNA polymerase bind and remain stably bound to 

the strand as it is transcribing the DNA. Without the transcription factors, the RNA 

polymerase can easily fall off because it is only loosely bound to the DNA or it may not 

be able to bind at all.   

In order for proteins to be created, the RNA polymerase must be able to perform 

transcription and create mRNA that will be later read to create proteins through other 
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processes.  Thus the transcription factors and the promoter regions they bind to are 

known to play a large role in the levels of gene expression because the more mRNA 

produced in transcription, the more proteins that are likely to be produced.  Gene 

expression can then be seen as the quantity of a particular protein structure that is created 

meaning more proteins created means a higher level of gene expression. 

While the complex interactions that occur in promoter regions during 

transcription are not fully understood it is known that they have a large influence on gene 

expression levels (Eisen, Spellman, Brown, & Botstein, 1998; Bussemaker, Li, & Siggia, 

2001). Recent research has shown that the orientation of the transcription factor 

(upstream or downstream), certain patterns of transcription factors, as well as the distance 

of a transcription factor from the TSS are all useful in predicting the level of gene 

expression. (Elemento, Slonim, & Takazoie, 2007) 

 

1.2.3. Gene Sequence Acquisition and Storage 

 The University of California in Santa Cruz (UCSC) maintains an online genome 

database called the Genome Browser (Fujita, Rhead, Warrell, Zweig, Hinrichs, 2011), 

which contains the DNA sequences of the complete human genome as well as other 

species and other genetic related data.  A file format known as fasta (.fasta) has been 

previously created for the storage of both nucleotide (DNA) and amino acid (protein) 

sequences.  The sequences are placed in a basic text file that contains a header line 

notated by '<'  or ';' at the beginning of the header and then a character representation of 

the sequence follows with a fixed number of sequence elements on each line, typically 50 
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or 80.  Using the fasta file format, the DNA sequences for 748 relevant genes (as 

determined by the previous gene expression work) were stored locally for use.  Only 

2,000 nucleotides were stored for each gene, 1,500 upstream and 500 downstream as it is 

known that this region is responsible for the large majority of gene expression regulation. 

 

1.2.4 Clustering Techniques 

 There are a large number of common clustering techniques and an even larger 

number of possible scoring metrics that could be used in those clustering techniques.  The 

idea behind clustering is to make it easier to look at a few hundred or thousand genetic 

sequences and organize them into groups (clusters) based upon some sort of sequence 

similarity or other feature similarities.  Clustering techniques for sequence alignment vary 

based upon whether you are looking for a global alignment (the entire sequence) or a 

local alignment (based upon an input) and how they are scored, e.g. using a distance 

algorithm to compute the level of difference between two sequences or regions within 

sequences.  

 For example, if there is interest in occurrences of a particular transcription factor 

in various gene sequences, then a local alignment would be done to line those sequences 

up based on the known sequence of that transcription factor.  Alternatively, if the interest 

lies in the relationships and history between different genes and their sequences, a global 

alignment may be done to make the entirety of each sequence match up with the rest as 

best as possible by shifting them up or down relative to each other. Clustering can also be 
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done using a set of gene features, the values for those features in each gene, and then 

clustering using those values.  

Given the same input, different algorithms, such as hierarchical or BLAST 

(Johnson, Zaretskaya, Raytselis, Merezhuk, 2008), will typically yield different results so 

a variety of algorithms need to be tested in order to find the one that will best model the 

gene expression data that we know to be true. This research used k-means, Self-

Organized Maps (SOMs) and a few clusters were generated using a hierarchical 

clustering algorithm.  

The k-means algorithm is a well-known clustering algorithm because of its 

simplicity as well as its ability to be reasonably effective for most clustering problems 

(Hartigan, Wong, 1979). In general, the k-means is an iterative algorithm that operates in 

two steps. The algorithm takes as input a set of data entries E with a corresponding set of 

values V and a starting cluster assignment. It begins by calculating the mean values of all 

the entries in each cluster and assigning those values as the cluster center. Then it 

reassigns the data entries to the cluster whose center its values are closest to (See Figure 

1.3). This algorithm continues until a set number of iterations have been performed or a 

particular finish parameter has been met such as meeting a particular sum of all entries 

distances from their cluster centers. In the Cluster 3.0 implementation it also takes as 

input the number of clusters to be generated, the number of iterations to be run, as well as 

an option to set the distance metric. 

Self-Organizing Maps are a similar algorithm to k-means in that it works to 

minimize the distance between items in a single cluster and maximize the distance 
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between clusters. What separates it from k-means is that it creates an artificial neural 

network that maps N features into a 2-dimensional map (See Figure 1.4) that has nodes 

placed to create edges that draw boundaries between cluster areas rather than defining a 

cluster center. This is a useful tactic in that it allows for an image to be drawn of the 

cluster space to be analyzed visually as well as also providing an efficient means for 

processing large amounts of outputs from the algorithm. The implementation used was 

from the GenePattern Server (Reich et al, 2006). Additionally, though this research has 

not explored it, a 2-step technique has been presented in which an SOM is generated and 

another clustering algorithm run with the SOM as input in order to achieve time-efficient 

and successful results (Vesanto, Alhoniemi, 2000).  

 

Figure 1.3: Visualization of K-means clusters (Mathworks, 2012). 
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Figure 1.4: Visualization of a Self-Organizing Map mapping N 

features into a 2-dimensional mapping space (SDL Component 

Suite, 2008). 

 

The hierarchical clustering implementation in Cluster 3.0 software was used (de 

Hoon, Imoto, Nolan, Miyano, 2004).  Hierarchical clustering uses a distance algorithm, 

such as the Euclidean distance, on gene data to create a gene tree where the length of a 

branch is representative of the distance between genes.  It can take either a top-down 

approach where all genes start in the same cluster and then are recursively divided up 

based on the distance function used.  Alternatively, it can take a bottom-up approach 

where each gene starts out in its own cluster and pairs of clusters are then recursively 

merged together until there is one cluster at the top of the hierarchy.   

This hierarchy can then be fed into a tree-viewing program such as Java TreeView 

(See Figure 1.4) that graphically displays the cluster hierarchy with a heat map of the 

feature values. It also identifies the clusters from the hierarchical tree by finding the 
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hierarchical level with the lowest sum of distances between each of the gene's scores in 

each of the clusters (Saldanha, 2004). This comparison requires the two trees to both have 

the same set of features so it was not feasible to compare because the original data used 

expression levels over time and the models tested looked at transcription factor counts 

and location. This technique was only used to cluster the original gene expression data 

and a few tests using scoring techniques that were promising in other algorithms because 

it is more suitable for visual representation.  

 

1.3. Relevant Research 

 The work done by Forrester, Roberts, and their student researchers this summer is 

the most closely related research as its results are being directly used in my research.  In 

their research, they conducted a microarray analysis of the gene’s expression levels over a 

period of 24 hours and clustered them using the hierarchical clustering method in Cluster 

3.0. This produced a set of 23 clusters containing 4 to 159 genes with most clusters 

containing 15 to 20 genes.  
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Figure 1.4: Example of a hierarchical clustering being viewed in 

Java TreeView. It contains a dendrogram of the clustered genes 

with their associate feature values represented as a heat map. The 

red highlighted portion in the first window has its heat map 

magnified in the second window and a list of all the genes within it 

in the third window. 

 

Research into the strength of DNA sequences as predictors of gene expression has 

only been investigated in the last 15 or so years. Initial work was done looking at gene 

expression levels and the presence of particular regulatory elements and later expanded to 

add conditions under which a particular TF motif would act as a regulatory element (and 

thus have an impact on the gene expression). Most experiments were done on simple 

organism such as S. cerevisiae and C. elegans (Beer & Tavazoie, 2004; Hill, Hunter, 

Tsung, Tucker-Kellog, et al., 2000) which have less complicated regulatory mechanisms 

than humans. This led to the development of a more general framework that focused 
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solely on the gene sequences and their correlation to gene expression rather than using 

probability matrices for TF motifs in particular genes.   

Others have compared promoter region sequences with different cells and gene 

expression data from experimentally generated data or using online gene expression 

databases such as Transfac (Wasserman, Sandelin, 2004; Wingender, Chen, Hehl, Karas, 

2000).  Some useful clustering techniques intended for the discovery of structures in a 

gene’s promoter region have also been suggested using machine learning (Curk, Petrovic, 

Shaulsky, & Zupan, 2009; Fitzgerald, Shlyakhtenko, Mir, & Vinson, 2004). These articles 

also discussed the difficulties of determining the combinatorial effects of transcription 

factors and other promoter region regulatory structures. 
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Chapter 2 

 

Project Implementation 
 

 

 

2.1. Methods 

 

 Using the standard Java 5.0 libraries, DNA sequence input is received in a .fasta 

file, processed, and then stored in an object containing a gene name and the one or more 

string representations of that gene's promoter region sequence. An example fasta file can 

be seen in Figure 2.1.  This sequence information was downloaded from the UCSC 

Genome Browser with the promoter region defined as 2000 nucleotides, 1500 base pairs 

upstream from the TSS and 500 base pairs downstream.  The sequences were then 

searched for known TF binding site DNA sequences and passed to the Cluster 3.0 

clustering software for either k-means or hierarchical clustering. Then the resulting 

cluster set was compared with the cluster resulting from running the original gene 

expression values through the same clustering algorithm with the same parameters in 

order to determine the model’s accuracy.  In all cases, the modeled gene clusters were 

compared with the clusters generated by passing the actual gene expression data through 

to determine the accuracy of the model.  Each model will seek to improve upon the 

previous model by using insight gained from analysis of the two sets of gene clusters 

produced by that previous model.  
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Fig 2.1: Example of a .fasta file containing DNA sequences 

for two genes’ promoter regions. 

 

2.1.1. Number of TF Matches as Scoring Method 

 The first scoring procedure counted the number of occurrences for each of 54 

different transcription factor binding sites. A matrix of nucleotide frequencies for the 

transcription factors was retrieved from the JASPAR database and a list of all the 

sequences used to create the transcription factors was created (Vlieghe, Sandelin, De 

Bleser, Vleminckx, et al., 2006; Abbreviations, 1970).  Out of a total of 65 possible 

transcription factors, 11 did not have any matches in any of the genes and were removed 

from the set.  For each gene, an initial range of 500 nucleotides upstream of the TSS was 

defined as the search region to find matches of the transcription factor and the number of 

instances of each transcription factor was stored. 
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 A basic scoring function was created using the number of transcription factor 

occurrences as the only feature used to generate the gene clusters.  The list of genes with 

the number of instances of each transcription factor was then given as input into the 

Cluster 3.0 k-means clustering algorithms.  The set of gene clusters that was produced by 

the hierarchical clustering was then compared with the original gene clusters to determine 

the accuracy of the model.   

 The creation of an improved scoring function was attempted by integrating the 

transcription factor binding site match’s location in the promoter region into the simple 

match count. This approach was never fully utilized however as it was difficult with such 

a large amount of data to determine the significance and effect of a motif’s location and 

position on the gene expression/cluster.  

 

2.1.2. Analyzing Model Success 

 A variety of methods to determine the success level of each gene clustering were 

used.  First, a confusion matrix was utilized with the rows representing the gene clusters 

generated from the model and the columns represented the original gene clusters.  The 

confusion matrix was necessary and useful to determine which of the original clusters 

each of the modeled clusters are similar (ideally identical) to.  The value at a particular 

intersection in the confusion matrix is simply the total number of genes that were in the 

union of the two gene clusters.  If the two gene clusters are similar, then every row and 

column will have one large number and the rest will be relatively small or zero indicating 

that each cluster matches well with only one of the clusters from the other set. Said 
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another way, there should be a one to one relationship between the pairs of similar gene 

clusters.  This is necessary as unless the clusters can be found to be comparable there is 

not a useful way to further analyze them as they're clearly not accurate. 

Next, percentage accuracy for the model was determined. Ideally, for each of the 

matched pairs of gene clusters, the percentage of the genes in the original clusters that are 

also found in the modeled clusters would be stored.  As there is no implicit mapping 

between the two sets of clusters there is no way to determine whether a particular gene 

was placed in to the “correct” cluster.  

Therefore, a different approach utilizing the basic relationship between genes in 

the cluster sets as either being in the same cluster in a set or being in different clusters 

was used. This pairwise gene comparison scoring algorithm iterated through all possible 

gene pairs, determined if the two genes were in the same cluster in both the original 

cluster set and modeled cluster set, and then computed the overall score. This score was 

equal to S/D where S is the total number of pairs for which the pair of genes was in the 

same cluster in both sets and D is the total number of pairs for which the pair of genes 

were in the same cluster in one set and different in another. This score essentially gives a 

ratio for the number of gene cluster relationships that are maintained between the two 

cluster sets. The total number of gene pairs that were found to be in different clusters in 

both cluster sets were not included because we are interested in genes that are meant to be 

clustered together and determining the number of genes that aren’t supposed to be 

clustered together is not a useful measure. 
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 In order to determine the significance of the resulting pairwise comparison, 100 

different cluster sets where all 748 genes were randomly assigned to a cluster and then 

compared with the original summer results. The average performance of these random 

cluster sets was used as the baseline value for comparison. 
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Chapter 3 

 

Project Results and Future Work 
 

 

3.1. Results 

 The confusion matrix method did not show strong cluster correlations between the 

two cluster sets so the pairwise comparison was the only method used for comparison. 

Interestingly, the results showed that for particular TFs, even searching for just one TF 

gave an increase over the baseline values of 2.7% for k-means and 2.6% for SOMs. This 

performance boost did not increase significantly when additional TF matches were 

searched for and actually drops off after 10 TFs. When all 54 TF motifs were searched 

for, the accuracy was 3.17%. The results for all possible subsets of four TFs achieved 

only a maximum of 7.4% retained gene relations using the k-means clustering algorithm. 

When compared to the results from the SOM testing given the same input, the SOM 

produced clusters that had an average 2% less retained gene relations with the highest 

only reaching 6.8%.  

These results are not high but the metric’s scale itself is not linear so these 

numbers need to be interpreted with that understanding. For each additional gene that is 

placed into the “correct” cluster, there is also then a decrease in the number of genes that 

it is not in the “correct” cluster with. This ratio of positive to negative effects on the 

overall accuracy score starts out low when the modeled clusters show low correlation to 

the original clusters and increases quickly as the number of genes “correctly” assigned 

increases. Since it is also known that k-means and other common agglomerative 
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clustering algorithms aren’t well suited to solve this problem two things can be concluded 

from these results. First, these results support the previous statement and second, as 

SOMs have been said to be best suited for pre-clustering, it is not surprising that k-means 

consistently produced better cluster sets than the SOMs.  

 The ten most prevalent transcription factors and their combinations with two 

other transcription factors did not achieve high results either, reaching only 7.8%. 

Prevalent transcription factors included: NKX3-1, RELA, NF-kappaB, SRF, EGR1, 

MIZF, HLF, NR2F1, NFIL3, TAL1-TCF3, RORA_1, INSM1, NHLH1, ELK4, MEF2A, 

NFE2L2. The best pairwise comparison results of the k-means clustering algorithms 

using different numbers of transcription factors can be seen in Figure 3.1. 

Lastly, it should be noted that the hierarchical clustering method proved difficult 

to analyze as the file output from Cluster 3.0 was designed to lend itself to efficiently 

produce an image for a graphical interface. In the case of the k-means and SOM 

clustering file outputs, the files made it clear which cluster each gene was assigned to 

whereas the hierarchical clustering file output would have required a manual analysis. 

 

3.2. Future Work 

 As was noted before, the research that has been presented here has already been 

found to be an ill-suited approach to solving this problem as some a priori information is 

necessary for accurate gene expression level prediction, including the distribution 

probability of the transcription factors in each original gene cluster. Attempting to 

determine the relationships between individual transcription factors and that 



21 

 

relationship’s resulting effect on a gene’s expression level is difficult due to the large 

amount of data and the sheer complexity of the features involved. Thus more work could 

be done to create a Bayesian network including this and other transcription factor motif 

match information and following the procedures laid out by Elemento et al (2007).  Their 

research suggests that their approach could be useful on this data set and new parameters 

can be researched and integrated into their model to further improve its accuracy. This 

could include more environmental factors, larger sequence search areas and motif match 

scoring.  

 

Figure 3.1: Top model performance based upon the number of 

transcription factors searched for using the k-means algorithm and 

the pairwise comparison analysis. 

 

 Additionally, because this research worked with subsets of variable size from the 

total set of 54 relevant different transcription factors, there were many more possible 
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transcription factor subsets than could be tested within this study’s timeline. Research 

into the relationships between the significant transcription factors found will also prove 

useful in determining the common functionalities of the genes in particular clusters. It is 

known that NF-kappaB is composed of RELA and NFKB1, yet NFKB1 did not appear in 

the set of significant transcription factors thus further research into this is necessary to 

elucidate any possible significance of this information. It may be that a distance or 

orientation metric is necessary to determine how NFKB1 binding sites have an effect on 

gene expression level, if it does at all. 

 Some environmental factors that will prove particularly difficult to model include 

the ability of some transcription factors to bind to other transcription factors rather than 

the gene DNA sequence. Though it is useful to visualize DNA sequences as linear, in 

reality they are known to loop and coil depending upon both the DNA sequence itself and 

external factors. This leads to the possibility that a binding site thousands of base pairs 

away from the TSS can have a significant impact on the gene expression level, further 

increasing the difficulties of creating an accurate model.  

One option that may serve to both validate the existence of transcription factor 

binding sites discovered in this research as well as to discover new binding sites would be 

to perform ChIP-seq experiments (Liu, Potts, Huss, 2010). Simply put, ChIP-seq is a test 

that is able to experimentally determine the specific binding sites by testing for particular 

changes in the DNA that occur when a transcription factor binds to a gene’s DNA. The 

resulting data could then be used as input into the Bayesian network described by 

Elemento et al. (2007). 
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 This future work only includes a few possible directions for this research to go in 

but there are many more options available for improving the efficacy of this gene 

clustering model. Additional knowledge of the genetic mechanisms of transcription as 

well as experimentally determined binding sights from ChIP-seq experiments will give 

insight as to what extensions or modifications to the existing approaches will prove most 

useful. 
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