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Abstract

Dynamical Effects of Non-Linearities and Time-Varying Gain
Modulation in Neurally Plausible Network Models of Perceptual

Decision-Making

by
Ritwik K. Niyogi

Simple perceptual decision-making links sensation to action and constitutes the basis
of many cognitive processes. Recent studies in neuroscience have made progress in
identifying the neural systems associated with such processes. In particular, electro-
physiological recordings from behaving primates have found the neuronal correlates
of temporal integration of sensory information during perceptual decision-making
tasks. However, less is known about how the underlying decision network operates,
and how it can be adapted or modified to achieve behavioral goals.

Mathematical modeling of these decision processes seeks to provide a theoretical
framework against which experimental findings can be interpreted and evaluated.
We use computational and analytical techniques from dynamical systems theory to
study non-linear and linearized versions of neurally plausible low-dimensional neural
network models, which accumulate sensory evidence over time in order to form a
categorical perceptual choice among two competing alternatives. In particular, we
investigate how non-linearities in and multiplicative gain modulation of neural input-
output (transfer) functions (e.g. due to attentional processes) can affect the dynamics
of the decision network. Our work extends previous modeling efforts and generates
predictions about how the stability and behavior of the decision network depend
critically on stimulus parameters. In addition it predicts that modulation of both
excitatory and inhibitory cells may be involved during temporal integration. We
show how dynamic gain modulation over time can affect the temporal dynamics of
the decision network, and thus enable flexible decision-making.
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1 Overview

Simple decisions form the basis of most psychological processes and behavior, from
perception (was that a ball or a strike?), memory (is the count level or full?), to
action (should I swing high or low?). Behavioral economics focuses on the outcomes
on these decisions and not on the dynamics of the decision processes themselves.
Neuroscientific studies have made progress in identifying the neural systems associ-
ated with such processes. However, less is known about precisely how they operate
and how they are monitored and modified in order to achieve the goals of behav-
ior. Mathematical modeling of these decision processes seeks to provide a theoretical
framework against which experimental data can be interpreted and evaluated.

For my mathematics honors thesis, conducted during the 2008-09 academic year,
I propose, analyze, and test neural network Leaky Competing Accumulator (LCA)
models as well as neurally realistic models of decision-making. I use numerical sim-
ulations and analytical methods of dynamical systems theory to study these models,
predict their behavior, and delineate parameter regimes that best correspond to em-
pirical data.

In Section 3 we introduce the problem investigated. In Section 4, we describe
the Two-Alternative Forced-Choice task in which a categorical decision between two
alternatives must be made. We discuss the experimental findings from this task in
Section 5. In order to mathematically model this experimental data and generate
testable predictions, we first formulate the decision problem in Section 6. We de-
duce that a sequential sampling technique known as the Sequential Probability Ratio
Test is the optimal decision-maker and describe how this can be translated into the
continuous Drift Diffusion Model in Section 7. We then explore a two dimensional
abstract, neural network model called the Leaky Competing Accumulator model of
perceptual decision-making in Section 8. Specifically, we apply dynamical systems
theory to perform mathematical analyses, exploring the model’s dependence on pa-
rameters and non-linearities, and how these can enable categorical decision-making.
Subsequently, we attempt to model the time-courses of neural activity, employing
a reduced two-variable biophysically realistic model in Section 9. Performing sim-
ilar analyses, we extend previous work and propose dynamic gain modulation, or
the modificiation of the slope of an input-output function as a neurally plausible
mechanism of perceptual decision-making. We discuss our results and conclude in
Section 10. We begin by detailing the preliminaries necessary to fully comprehend
and thereby appreciate the mathematical analyses involved in this research.
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2 Preliminaries

In this section, we state the mathematical definitions and concepts that we shall
employ in subsequent sections. A (continuous) dynamical system is represented
by a system of N differential equations

dxi
dt

= Fi(x1, x2, . . . , xi, . . . , xN) (2.1)

The system is linear if Fi is linear for all i, and it is non-linear otherwise. For a
given set of initial conditions xi(0), we can solve the system given by Eq.(2.1). The
solutions (x1(t), x2(t), . . . , xN(t)) then trace out the trajectory determining how
this system evolves over time. The system is said to have reached steady state
when

dxi
dt

= 0 ∀i. (2.2)

The solution to this equation yields the fixed points or steady states of the
system x∗i such that the trajectories eventually attain these values, i.e., xi(t)→ x∗i as
t→∞. We specifically focus on 1-dimensional (N = 1) and 2-dimensional (N = 2)
systems for which our research is particulary applicable. The set of trajectories
(x1(t), x2(t)) for all initial conditions x1(0), x2(0) yields the phase-plane. For a 2-
dimensional dynamical system, the solutions to Eq. (2.2) are called the nullclines
of the system. The point of intersection of the nullclines thus yield the fixed points.

For a 1-dimensional system, a fixed point is stable if small perturbations η from
it decay with time. Similarly, it is unstable if these small perturbations increase
with time. Consider a small perturbation η(t) = x(t) − x∗ from the fixed point x∗.
Then, assuming F to be linear around the fixed point,

η̇ =
d

dt
(x− x∗) = ẋ (2.3)

since dx∗

dt
= 0. Thus, η̇ = ẋ = F (x) = F (x∗ + η). Then, using Taylor’s expansion

about x∗, we observe that

F (x∗ + η) = F (x∗) + ηF
′
(x∗) +O(η2) (2.4)

Thus, neglecting terms of order 2 and higher in η, and noting that F (x∗) = 0,
Eq. (2.3) simplifies to η̇ ≈ ηF

′
(x∗). Therefore, perturbations η(t) grow exponential

if F
′
(x∗) > 1, making the fixed point unstable and decay if F

′
(x∗) < 1, enabling a

stable fixed point. This constitutes a linear stability analysis.
For a 2-dimensional system, we may linearlize around the fixed point (x∗1, x

∗
2) to

perform a linear stabiility analysis and thereby determining the stability of the fixed
points. Let us assume dx1

dt
= F (x1, x2) and dx2

dt
= G(x1, x2). Let u = x1 − x∗1, v =

x2 − x∗2 be the components of a perturbation from the fixed point. Then,
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u̇ = ẋ

= F (x∗1 + u, x∗2 + v)

= F (x∗1, x
∗
2) + u

∂F

∂x1

+ v
∂F

∂x2

+O(u2, v2, uv)

= u
∂F

∂x1

+ v
∂F

∂x2

+O(u2, v2, uv), (2.5)

where the partial derivatives are evaluated at the fixed point. Similarly, v̇ = u ∂G
∂x1

+

v ∂G
∂x2

+O(u2, v2, uv). Since the perturbations u, v are small, we can neglect quadratic

terms, i.e. O(u2, v2, uv) ≈ 0. We can then write these equations in matrix form

 u̇

v̇

 =


∂F (x∗1,x

∗
2)

∂x1

∂F (x∗1,x
∗
2)

∂x2

∂G(x∗1,x
∗
2)

∂x1

∂G(x∗1,x
∗
2)

∂x2


 u

v

 . (2.6)

The let the Jacobian matrix be defined as

J(x∗1, x
∗
2) =


∂F (x∗1,x

∗
2)

∂x1

∂F (x∗1,x
∗
2)

∂x2

∂G(x∗1,x
∗
2)

∂x1

∂G(x∗1,x
∗
2)

∂x2

 (2.7)

Let τ =
∂F (x∗1,x

∗
2)

∂x1
+

∂G(x∗1,x
∗
2)

∂x2
be the trace and ∆ be the determinant of this matrix.

In order to deduce close-form solutions for this equation, we find the eigenvalues Λ
of the Jacobian matrix, we note that det(J−ΛI) = 0, where I is the identity matrix.
We then solve the characteristic polynomial equation

Λ2 − τΛ + ∆ = 0, (2.8)

obtaining 2 eigenvalues Λ1 and Λ2. Then u(t) = eΛ1t and v(t) = eΛ2t. If both
Λ1,Λ2 < 0, then the fixed point is a sink. If both Λ1,Λ2 > 0, it is a source. If
Λ1 > 0 and Λ2 < 0 or vice versa, then the fixed point is a saddle. The set of initial
conditions x1(0), x2(0) for which (x1(t), x2(t)) → (x∗1, x

∗
2) as t → ∞ is called the

stable manifold of the saddle. Similarly, the set of initial conditions x1(0), x2(0)
for which (x1(t), x2(t)) → (x∗1, x

∗
2) as t → −∞ is called the unstable manifold

of the saddle. Thus, we note that a trajectory typically approaches the unstable
manifold as t→∞. The set of initial conditions for which trajectories approach the
sink (or attracting fixed point) is called the basin of attraction for the sink.

In order to study the dependence of the eventual behavior of system on param-
eters, we may vary a particular parameter and note what fixed points exist, and
whether they are stable or unstable. This constitutes a bifurcation diagram.
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3 Introduction

The ability to optimize behavior in the face of competing goals is imperative for
the survival of any organism. Whereas behavioral economics has focused on opti-
mal outcomes, understanding the dynamics and mechanisms of the decision process
itself is crucial and is currently the focus of much decision-making research, both
at the theoretical and experimental levels. Recording, evaluating and modeling the
time-course of a decision process yields a deeper understanding of the mechanisms
underlying decision making, especially when time is of essence, either because of
a predetermined deadline for responding or because rapid responding is extremely
profitable.

Electrophysiological recordings from the parietal cortices of awake, behaving pri-
mates has revealed the time-course of decision-making in simple, perceptual choice
experiments [22, 29] . Behavioral results show robust Reaction Time (RT) distribu-
tions, which are skewed toward longer rection times. These empirical results have
been approximated by mathematical models, which make three principal assump-
tions: (i) evidence in favor of each of the decision alternatives is accumulated over
time, (ii) the stimulus is inherently noisy and the decision process is subject to ran-
dom fluctuations and (iii) a decision is rendered when evidence favoring one of the
alternatives sufficiently exceeds those for other alternatives [2, 33]. These models,
while based on similar assumptions, vary in the degree to which they integrate ev-
idence and approximate biological phenomena. Whereas neurally realistic models
of several neurons can describe the time-courses of neuronal firing rates, obtained
from electrophysiological recordings, neural-network and reduced, mean-field models
can be used to propose optimal decision policies, against which behavioral data can
be compared. A large amount of behavioral and electrophysiological experimental
data as well as a variety of mathematical models exist for simple, Two-Alternative
Forced-Choice (TAFC) tasks [17, 18, 19, 9].
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4 The Two-Alternative Forced-Choice (TAFC) Task

In the TAFC task, a choice must be made between 2 alternatives, based on limited
information about which one is correct (that is, which one gets rewarded). The
TAFC is simple and representative of a natural decision such as inferring the direc-
tion of a stimulus motion or deciding whether to approach or avoid a stimulus. A
common TAFC used in both human behavioral psychology and primate electrophys-
iology experiments involves subjects identifying the direction of motion of a group
of coherently moving dots from a background of other, randomly moving dots, all
of which are presented on a screen. The stimulus fidelity or task difficulty can be
varied by altering motion strength or coherence, the fraction of coherently moving
dots. Subjects may be instructed to respond at leisure (Fig. 1 A), before a deadline
or immediately after a cue (Fig. 1 B). Additionally, the delay between the presen-
tation of the dot motion stimulus and the response made, may be varied by the
experimenter.

Figure 1: Two Alternative Forced-Choice Tasks. On each trial the subject is shown one
of two stimuli, drawn at random. It must identify the direction (left or right) in which the
majority of dots are moving. The experimenter can vary the coherence of movement (%
moving left or right). Correct decisions are rewarded with either drops of juice. Primates
respond by making a visual saccade towards either the left or the right. The goal of the
task is to maximize reward accrued. A) Reaction Time/Free-Response task: the subject
can respond at leisure. B) Fixed Viewing Duration/Interrogration Paradigm task: The
subject responds at a fixed time immediately following a cue. Reproduced from [22].

5 Experimental Results

Electrophysiological recordings in the Middle Temporal (MT) and Lateral Intrapari-
etal (LIP) cortices of awake, behaving primates (Fig. 5 A) performing the dot-motion
task have revealed qualitatively distinguishable firing rate patterns of neurons in the
two areas.

A stimulus comprising a majority of dots coherently moving towards the left
elicited larger firing rates in neural populations in the MT (involved in the process-
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Figure 2: A) Electrophysiological recordings in primates identify neural systems involved
in perceptual decision-making. B) Firing-Rates of neurons in the area MT, selective for
leftward direction of motion and rightward motion [15]. C) Firing-rates of neurons in
the area LIP selective for leftward saccades, for different motion strengths. Solid lines
represent saccadic choices toward the leftward target (T1), dotted lines represent saccades
made toward the rightward target (T2). The firing-rates of neurons selective for rightward
saccades when the motion is towards the left are assumed to have time-courses similar to
that for a leftward selective neuron when a rightward saccade is made. The time at which
the firing-rates cross a threshold is correlated with the behavioral Reaction Time. D)
Psychometric function relating Accuracy to % coherence. E) Reaction Times as a function
of motion-strength. Reproduced from [22].
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ing of motion) that were selective towards leftward motion (Fig. 5 B). However, the
firing rates of the neurons in the MT were not time-dependent, depending linearly on
the motion coherence. The firing-rates of both the selective and non-selective pop-
ulations remained noisy, and determining the decision from this pattern would be
inaccurate, being merely reflective of the inherent uncertainty present in the stimulus
and its consequent neural representation. Firing-rate patterns observed in the LIP
(involved in the processing of eye-movements) displayed a ramping up of activity over
time for the neural populations selective for the corresponding direction of motion,
correlated with the decision rendered, together with a decay of firing rate activity
for the populations selective towards the opposite direction (Fig. 5 C). Critically,
the time at which these firing-rates cross a fixed threshold just before the saccadic
decision is made, yields the RTs for behavioral performance. The ramping up to this
decision threshold was faster for larger motion-strengths [5, 22, 29]. Behavioral find-
ings such as psychometric functions relating accuracy to coherence revealed greater
accuracy when the coherence was higher (Fig. 5 D). Similarly, RTs were shorter
for higher coherences, reflecting faster ramping up to the decision threshold (Fig. 5
E) [22]. Taken together, these results suggest that in such perceptual choice exper-
iments, noisy signals regarding the stimulus are relayed from the MT to the LIP,
where the evidence favoring the two alternatives is integrated over time [30].

6 The Decision Problem

In order to mathematically model this decision process, we consider 2 neuronal
populations whose firing rates (activities) provide evidence for 2 alternatives. Let
the population-averaged mean neural activities of the competing populations be
I1(t) = I1 and I2(t) = I2, respectively. I then reflects the amount of evidence
accumulated favoring each choice at any particular time. Each population has in-
dependent random fluctuations with the same standard deviation σ(t) = σ. The
evidence in favor of each alternative is integrated over time. The goal of the decision
process is to determine which of I1 and I2 is greater at the moment the decision
is made. The presence of noise introduces a speed-accuracy tradeoff. A fixed low
threshold for the accumulation process causes the decision to be fast but inaccurate
whereas a higher fixed threshold allows more time for the noise to be averaged out,
but accumulation takes place over a longer time. The optimum decision problem can
be defined as: given I1, I2, σ: what strategy yields
a) The highest accuracy (lowest Error Rate: ER = P (Error), the probability of
making errors), given a fixed Decision Time (DT ), corresponding to what is known
as the Interrogation Paradigm, or
b) The shortest Response Time (RT = DT +T0, where T0 is the time due to sensory-
motor processes) given the Error Rate (ER). This is an example of the Free-Response
Paradigm wherein subjects implicitly choose a tradeoff to maximize their reward.

Consider Y , a random variable that computes the difference in activity of the 2
populations. Successive samples of Y in each trial are drawn from 1 of 2 probability
distributions p1(y) and p2(y) with means m1 and m2. We wish to find which of

7



hypotheses H1(I1 − I2 = m1 > 0) or H2(I1 − I2 = m2 < 0) is correct. For the
Interrogation Paradigm (minimize ER subject to fixed DT ) the Neyman-Pearson
[16] procedure is used. In order to find from which distribution a random sequence
Y = y1, y2, , yn is drawn, we calculate the likelihood ratio of Y , given H1, H2

p1n

p2n

=
p1(y1)p1(y2)...p1(yn)

p2(y1)p2(y2)...p2(yn)
(6.1)

We consider all observations to be independent. Then p1n and p2n give the prob-
ability of observing the sequence of observations under H1 and H2, respectively. H1

is accepted if the ratio in Eq.(6.1) is greater than Z where Z is a constant deter-
mining the level of accuracy for H1 or H2. For a fixed n (corresponding to a fixed
DT ) and Z = 1, this procedure yields the minimum error probability P (Error)min,
making it optimal for the Interrogation Paradigm. For the Free-Response Paradigm
(Minimize DT , subject to fixed ER) the Sequential Probability Ratio Test (SPRT)
is used [1, 34]. In this case, observations continue as long as

Z2 <
p1n

p2n

< Z1 (6.2)

We assume Z2 < Z1. If p1n

p2n
> Z1 then H1(I1 − I2 = m1 > 0) is accepted but if

p1n

p2n
< Z2 then H2(I1− I2 = m2 < 0) is accepted. Among all fixed or variable sample

decision methods that give fixed error probability, SPRT minimizes the number of
samples n [35] (corresponding to Minimum DT ). Thus the SPRT is optimal for the
Free-Response Paradigm. Now if we take logarithms in Eq.(6.1) and Eq.(6.2), then
accumulation continues as long as

logZ2 <
n∑
i=1

log
p1(yi)

p2(yi)
< logZ1 (6.3)

That is the accumulation process is given by

In = In−1 + log
p1(yn)

p2(yn)
(6.4)

Then Eq. (6.4) is a random walk starting at I0 and accumulation continues till
In > logZ1 or In < logZ2.

7 Drift Diffusion Model (DDM)

We observe that as discrete samples are taken more frequently, the discrete log-
likelihood ratio In in Eq. (6.4) becomes the continuous random variable x(t). We
integrate the difference between evidence for 2 alternatives H1 and H2 where x(t)
is the accumulated value of the difference at time t. Then the pure Drift Diffusion
Model (DDM) is given by the first order stochastic differential equation (SDE):

dx = A dt+ σ dW, x(0) = 0 (7.1)

8



where A dt represents the average increase in evidence supporting the correct choice
per unit time. Note that A > 0 if H1 is correct and A < 0 if H2 is correct. σ dW is
white noise, Gaussian distributed with Mean 0 and Variance σ2 dt.

Figure 3: Time evolution of the Drift Diffusion Model (DDM) showing accumulated dif-
ference between the evidence for the two alternatives as a function of time. The model
was simulated for 100,000 trials using the Euler method with timestep dt = 0.01, drift rate
A = 0.1, σ = 1 and threshold z = 1. Several sample paths are shown. The histograms
show the number of paths reaching the corresponding thresholds after a particular time
interval.

Thus, on average, x grows at the drift rate A but solutions diffuse owing to the
presence of noise. Sample paths may therefore cross the the incorrect threshold,
yielding errors (Fig. 3). Note that

x(t) ∝ In (7.2)

where t = n∆t, and ∆t is the time between samples In−1 and In. Hence the DDM
implements the Neyman-Pearson procedure for Z = 1 for the Interrogation Paradigm
and the SPRT for the Free-Response Paradigm, making it the optimal decision maker.

The DDM is useful, however, for modeling simple decision tasks [20]. Complex
decision tasks, which involve the accumulation of reward biases, stimulus histories
and attentional shifts require additional features such as time-varying drift-rates
[11], or other models such as the Ornstein-Uhlenbeck (O-U) model or the Leaky
Competing Accumulator (LCA) model [32].
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8 Leaky Competing Accumulator Model (LCA)

The Leaky Competing Accumulator (LCA) Model, alternatively known as the Mu-
tual Inhibition Model of Decision Making in Two-Alternative Forced-Choice (TAFC)
tasks (Fig.4) is described by the ordinary stochastic differential equations (SDEs):

dx1 = [ρ1 − kx1 + αf(x1)− βf(x2)]
dt

τ
+ σdW1

dx2 = [ρ2 − kx2 + αf(x2)− βf(x1)]
dt

τ
+ σdW2 (8.1)

where x1 and x2 represent the two decision variables corresponding to the input
currents received by the populations selective for the two alternatives and f rep-
resents the firing-rates of these populations. This input current-output firing-rate
function f can vary in its degreee of non-linearity. It can be linear, piecewise linear,
threshold-linear or the non-linear logistic function. ρ1 and ρ2 represent the input
signals relayed from the MT. These depend on the motion-coherence. α, k and β
represent the recurrent self-excitation, leak and mutual inhibition, respectively. τ
represents a time-constant that determines how fast or how slow the evidence ac-
cumulation takes place. Note that τ > 0. dW1 and dW2 are independent Wiener

process increments drawn from a normal distribution. That is, dWj =
√

dt
τ
N(0, 1).

We consider these noise processes to have a standard deviation σ. We assume the
initial conditions x1(0) = x2(0) = 0.

Figure 4: The Leaky Competing Accumulator Model of perceptual decision-making. The
two decision units x1 and x2 represent neural populations in the LIP selective for leftward
and rightward saccades. These leaky, mutually-inhibitory populations receive noisy input
signals from the MT.

In order to explore meaning of each parameter in greater detail, consider the
noise-free ordinary differential equations (dWj = 0). In the absence of inhibition
(β = 0), and signals from the MT (ρ1 = ρ2 = 0), Eq. (8.1) reduces to dxi

dt
= −k

τ
xi.

Since the leak k is always positive, the activity of each of the decision variables decay
to baseline (x(t) = e−t/τ ). The mutual inhibition β expresses the amount by which
two neural populations inhibit one another’s activities. This is evident if we consider
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ρ1 = ρ2 = 0, k = 0 in the deterministic version of Eq.(8.1). The greater the input-
current x1, the greater its firing-rate f(x1), the greater is the inhibition of the decision
variable x2 and vice-versa. This ensures that when x1 and hence f(x1) is ramping
up, x2 and consequently f(x2) is ramping down, enabling a categorical decision to be
rendered, in a manner similar to that observed in electrophysiological experiments.
α represents recurrent self-excitation. If we set all other parameters except α to
zero, then Eq. (8.1) becomes dxi

dt
= α

τ
f(xi). Since α ≥ 0, the input-currents xi and

the firing-rates f(xi) keep increasing, which corresponds to the populations being
self-excited.

In subsequent subsections, we analyze the dynamics of the model in each case in
f . For simplicity we shall assume α = 0, as in [8], though this restriction shall be
removed while studying more complex variations of the LCA. We place particular
emphasis on studying the phase plane of the models in different parameter regimes.
Particularly, we consider whether fixed points exist, and if so whether they are un-
stable or stable. Determining whether asymetrical, stable fixed points x∗1 6= x∗2 exist
for the decision making system, and if so, where they are located, or equivalently,
which of x∗1 or x∗2 is greater, is imperative for determining the decision rendered.

If the fixed point is a saddle, then it represents a point where x1(t) and x2(t) be-
come unequal and diverge such that one increases while the other is inhibited towards
baseline. This corresponds to the point of splitting between firing-rates (obtained by
computing f(xi(t))) of the two populations selective towards the leftward or right-
ward saccade generating stimuli Fig. (5 C) observed in primate electrophysilogy
experiments [22].

In our analysis, we consider 3 cases, when the network is leak dependent: β < k,
balanced: β = k or inhibition dependent β > k. In predominantly leaky networks,
information that is accumulated during the earlier parts of a trial is lost and greater
importance is placed on information relayed to the decision network during the later
parts. The inverse is true for inhibition dependent networks. We thus demonstrate
that the relative magnitudes of leak and inhibition play a major role in the dynamics
of the decision process.

We also deduce that not only does the degree of coherence C of the dot motion
stimulus determine how fast neural firing rates increase or decrease, but also deter-
mines where in the phase plane the fixed points lie. We derive coherence ranges for
the the location and nature of the fixed points in closed form. Whereas previous
work has studied the effect of different gains of neural input-output functions [8] as
discussed below, we explore the effects of the degree of non-linearity and different
coherences in LCA models of perceptual decision-making.

We assume k, β > 0 and ρ1 + ρ2 = 1, ρ1, ρ2 ∈ [0, 1]. Let ρ1 − ρ2 = C ∈ [−1, 1].
Thus,

ρ1 = 0.5(1 + C)

ρ2 = 0.5(1− C) (8.2)

Then Eq. (8.1) becomes

11



dx1 = [ρ1 − kx1 − βf(x2)]
dt

τ
+ σdW1

dx2 = [ρ2 − kx2 − βf(x1)]
dt

τ
+ σdW2 (8.3)

If f(x) = x, we can orthogonally transform the linear system into uncoupled
coordinates (Fig. 5).

Figure 5: Orthogonal tranformation into two decoupled processes.

y1 =
x1 − x2√

2
(8.4)

y2 =
x1 + x2√

2
(8.5)

Note that, since the Wiener noise processes are assumed to be independent,

1√
2
σ́dẂj =

1√
2

(σdW1 ± σdW2) =
1√
2

√
σ2 + σ2dẂj =

√
2√
2
σdẂj = σdẂj (8.6)

Then the 2-dimensional LCA model given by Eq.(8.3) reduces to two uncoupled
1-dimensional Ohrnstein-Uhlenbeck (OU) processes

dy1 =

[
ρ1 − ρ2√

2
+ (β − k)y1

]
dt

τ
+ σdW ′

1 (8.7)

dy2 =

[
ρ1 + ρ2√

2
− (β + k)y2

]
dt

τ
+ σdW ′

2 (8.8)

Neglecting the noise dW
′
2, Eq. (8.8) has a fixed point at when dy2

dt
= 0. Then

y∗2 = ρ1+ρ2√
2(β+k)

= 1√
2(β+k)

. Let dy2
dt

= F2(y2) =
[
ρ1+ρ2√

2
− (β + k)y2

]
1
τ
. In order to

determine the stability of this fixed point, we perform a linear stability analysis as
described in Section 2.
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Perturbations from the fixed point grow exponentially if F
′
2(y∗2) > 1, making the

fixed point unstable and decay if F
′
2(y∗2) < 1, enabling a stable fixed point. Note that

for this OU model obtained from reducing the LCA model,

F
′

2(y∗2) = −β + k

τ
< 0 (8.9)

This fixed point is stable since β, k > 0 and ρ1, ρ2 ≥ 0.

Now, let dy1
dt

= F1(y1) =
[
ρ1−ρ2√

2
+ (β − k)y2

]
1
τ

Note that, Eq. (8.7) has a fixed point

at y∗1 = ρ1−ρ2√
2(β−k)

= C√
2(β−k)

. Performing a similar linear stability analysis, we note

that

F
′

1(y∗1) =
β − k
τ

. (8.10)

The stability of this fixed point, however, depends on the sign of β − k. Thus
Eq.(8.8) is a stable OU process whereas Eq. (8.7) is stable if β− k < 0 and unstable
if β − k > 0. Since in the interrogation protocol the decision made depends on
whether x1 or x2 is greater at the interrogation time T , (that is, Alternative 1 is
chosen if x1(T ) > x2(T ) and vice versa), the decision depends on the sign of y1(T ).
If y1(T ) > 0 then Alternative 1 is chosen and if y1(T ) < 0 then Alternative 2 is
chosen. We need only consider the OU process given by Eq. (8.8)

dy1 = [λy1 + A]
dt

τ
+ σdW (8.11)

where A = ρ1−ρ2√
2

and λ = β − k. When λ = 0 the OU process simplifies to the Drift

Diffusion Model (DDM)

dy1 = A
dt

τ
+ σdW (8.12)

The evolution of the probability distribution function for Eq. (8.11) p(y1, t) is gov-
erned by the forward Fokker-Planck or Kolmogorov Equation

∂p

∂t
= − ∂

∂x
[(A(t) + λy1)p] +

σ2

2

∂2p

∂x2
(8.13)

We assume that p(y1, 0) = δ(y1 − µ0), where µ0 is the mean of the probability
distribution function at time t = 0 and δ is the Dirac-delta function. Solutions to
Eq. (8.13) is given by

p(y1, t) =
1√

2πν(t)
exp

[
−(y1 − µ(t))2

2ν(t)

]
(8.14)

µ(t) = µ0e
λt +

∫ t

0

eλ(t−s)A(s)ds (8.15)

ν(t) =
σ2

2λ
(e2λt − 1) (8.16)
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If λ = 0 then Eq. (8.15) and Eq. (8.16) respectively reduce to

µ(t) = µ0 +

∫ t

0

A(s)ds (8.17)

ν(t) = σ2t (8.18)

The probability of choosing Alternative 1 is given by

Pchoose1(T ) =

∫ ∞
0

p(y1, t)dy1

=
1

2

[
1 + erf

(
µ(T )√
2ν(T )

)]
(8.19)

In the analyses that shall follow, we shall let k = 1 and allow β to assume the
values 0.5,1 and 1.5. Therefore λ can be either -0.5 (stable OU), 0 (DDM) or +0.5
(unstable OU). Other parameters include dt = 1, τ = 10 (hence dt/τ = 0.1)and
σ = 0.2214√

(2)
= 0.158, T = 100 iterations.

8.1 Input Current-Output Firing Rate Functions

We let f in Eq. (8.3) be different functions and that vary in their degree of non-
linearity and observe whether the dynamics of the model vary significantly or remain
similar. Specifically, as in [8] we consider f to be the non-linear logistic equation

Figure 6: Input Current-Ouput Firing-Rate functions f varying in their degree of nonlin-
earity. All of them have slope or gain g = 1 and shift b = 0.5
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f(x) =
1

1 + exp (−4g(x− b))
(8.20)

where g and b determine the maximal slope and shift.f(b) = 1
2

and f
′
(b) = g

(Fig.6).Let g = 1 and b = 0.5. Then Eq. (8.20) is bounded between 0 and 1.
Eq. (8.20) can be approximated as the threshold-linear function

f(x) =


0 if x ∈ (−∞, b− 1

2g
)

x if x ∈ [b− 1
2g
, b+ 1

2g
]

1 if x ∈ (b+ 1
2g
,∞)

(8.21)

Eq. (8.21) is linear except for a lower cut-off at 0 and an upper cut-off at 1. Eq.
(8.21) can be further approximated as

f(x) =

{
0 if x ∈ (−∞, b− 1

2g
)

x if x ∈ [b− 1
2g
,∞)

(8.22)

which is linear except for a lower cut-off at 0. In similar vein, as in [32] we can let
f be the identity function under the assumption that activations less than zero are
truncated to zero. In this case, the firing-rates are considered to be equal to the input
currents, and since firing-rates of neurons cannot be negative, they are dynamically
set to zero, if they become negative. Equivalently, xi(t) = max(xi(t), 0) in Eq. (8.3).
We denote this the truncated activation case. Finally, we can completely linearize
Eq. (8.20), assuming f to be the identity function.

8.2 Deterministic System

Considering the Leaky Competing Accumulator to be a noise-free system, Eq. (8.3)
becomes a system of completely determinisitc ordinary differential equations (ODEs).
We can compute the fixed points of this noise-free system using its nullclines.

x1 =
ρ1 − βf(x2)

k
(8.23)

x2 =
ρ2 − βf(x1)

k
(8.24)

Note that dx1

dt
= 0 on Eq. (8.23) and dx2

dt
= 0 on Eq. (8.24).

8.3 Stability Analysis of Network Models

In order to determine the stability of the fixed points, we assume dx1

dt
= F (x1, x2)

and dx2

dt
= G(x1, x2) and perform a linear stability analysis as described in Section 2.

For the Leaky Competing Accumulator model, in particular the Jacobian matrix
becomes

J(x∗1, x
∗
2) =

(
−k −βf ′(x∗2)

−βf ′(x∗1) −k

)
(8.25)
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The trace of this matrix is τ = trace(J) = −2k and the determinant ∆ = det(J) =
k2 − β2f

′
(x∗1)f

′
(x∗2).

There exist different cases depending on the values of k, β, ρ1 and ρ2. We shall
analyze the phase-plane in each of the cases k > β: the leak dependent LCA (cor-
responding to stable OU process when f is linear), k < β:the inhibition depen-
dent LCA (corresponding to an unstable OU process) and k = β: the balanced
LCA(corresponding to the DDM).

8.3.1 Linear

Performing the linear stability analysis, we note that f
′
(x∗1) = 1 = f

′
(x∗2) and thus

J(x∗1, x
∗
2) =

(
−k −β
−β −k

)
(8.26)

Note that the trace τ = −2k and the determinant ∆ = k2 − β2. In order to find the
eigenvalues Λ of the Jacobian matrix, we solve the characteristic polynomial equation

Λ2 − τΛ + ∆ = 0

⇒ Λ2 + 2kΛ + k2 − β2 = 0 (8.27)

This yields two eigenvalues Λ1 = β − k and Λ2 = −(β + k) < 0. Note that when
λ = β − k < 0, then Λ1 < 0,and the fixed point is a sink, whereas when λ > 0 then
Λ1 > 0, and the fixed point is a saddle. Note that |Λ2| > |Λ1| since β + k > β − k.
Hence, when the fixed point is a saddle, trajectories rapidly move to the decision line

y2 =
x1 + x2√

2
=

ρ1 + ρ2√
2(β + k)

(8.28)

and progress along it.

8.3.2 Piecewise linear: Lower Cut-Off

For the LCA system given by Eq. (8.3) with the Lower Cut-Off function Eq. (8.22),
for fixed points in Quadrant I (x∗1, x

∗
2 > 0), the stability is identical to the linear case.

Otherwise, for fixed points in Quadrants II or IV, f(x∗1) = 0 or f(x∗2) = 0. It follows
that f

′
(x∗1) = 0 or f

′
(x∗2) = 0

Thus, referring to Eq. (8.25), τ = −2k and ∆ = k2. Solving the charactersistic
polynomial, we obtain the eigenvalues Λ1 = Λ2 = −k < 0. Thus in this case, the
fixed point is a sink.

8.3.3 Threshold linear: Upper and Lower Cut-Off

For the Upper Cut-Off function given in Eq. (8.21), the analysis is similar to that
for the lower cut-off function. Note that when x∗1 ≥ 1 or x∗2 ≥ 1 then f(x∗1) = 1 or
f(x∗2) = 1, respectively. It follows that f

′
(x∗1) = 0 or f

′
(x∗2) = 0 and the fixed points

are sinks.
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8.4 Leak Dependent LCA: β < k, λ < 0

Figure 7 shows the phase-plane with the nullclines, the decision line and a sample

trajectory for C ∈
(
β−k
β+k
− β−k

β+k

)
. Another case (not shown here) occurs when C ∈[

−β−k
β+k

, 1
]
, respectively. When C ∈

[
−1, β−k

β+k

]
, the case is symmetric. Note that the

trajectories approach the decision line and move along it to a stable fixed point. We
discuss the various fixed points of the different types of LCA models, which differ
from eachother in the choice of the function f , beginning with the linear identity
function and then considering progressively non-linear versions of f .

8.4.1 Linear

When f(x) = x, we can solve the nullclines Eq. (8.23) and Eq. (8.24) to obtain

kx1 + βx2 = ρ1

kx2 + βx1 = ρ2 (8.29)

or equivalently, (
x1

x2

)
=

1

k2 − β2

(
k −β
−β k

)(
ρ1

ρ2

)
We obtain the unique fixed point (x1, x2)∗ =

(
ρ1k−ρ2β
k2−β2 ,

ρ2k−ρ1β
k2−β2

)
. Note that this

fixed point is always stable. The unique fixed point can be in one of 3 quadrants,
depending on the value of C and hence ρ1 and ρ2. We observe that x∗1, x

∗
2 > 0 when

ρ1k − ρ2β

k2 − β2
> 0

0.5(1 + C)k − 0.5(1− C)β

k2 − β2
> 0

C(k + β) > β − k

C >
β − k
β + k

(8.31)

and similarly,

ρ2k − ρ1β

k2 − β2
> 0

0.5(1− C)k − 0.5(1 + C)β

k2 − β2
> 0

C(k + β) < −(β − k)

C < −β − k
β + k

(8.32)
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that is, when C ∈
(
β−k
β+k

,−β−k
β+k

)
(Fig.7).

If x∗1 ≤ 0, x∗2 > 0 then

ρ1k − ρ2β

k2 − β2
≤ 0

0.5(1 + C)k − 0.5(1− C)β

k2 − β2
≤ 0

C(k + β) ≤ β − k

−1 ≤ C ≤ β − k
β + k

(8.33)

that is, when C ∈
[
−1, β−k

β+k

]
. Finally, x∗1 > 0, x∗2 ≤ 0 when

ρ2k − ρ1β

k2 − β2
≤ 0

0.5(1− C)k − 0.5(1 + C)β

k2 − β2
≤ 0

C(k + β) ≥ −(β − k)

−β − k
β + k

≤ C ≤ 1 (8.34)

that is, C ∈
[
−β−k
β+k

, 1
]
.

For our chosen parameter values of k = 1, β = 0.5, β−k
β+k

= −1
3
.

8.4.2 Truncated Activation

The nullclines for Eq. (8.3) with the criterion xi(t) = max(xi(t), 0) are shown in
Fig.7, upper right panel. When k > β, the system has a set of fixed points. The
fixed points are stable and always in the first (non-negative) quadrant. The fixed

point is (x1, x2)∗ =
(
ρ1k−ρ2β
k2−β2 ,

ρ2k−ρ1β
k2−β2

)
for the same values of C as in the linear case.

Solving using the nullclines

x1 = max

(
ρ1 − βx2

k
, 0

)
(8.35)

x2 = max

(
ρ2 − βx1

k
, 0

)
(8.36)

In addition, we have a set of fixed points as a consequence of dynamically clamping
either x1(t) or x2(t) to zero. We note that when x∗1 = 0, x∗2 = ρ2

k
and when x∗2 = 0,

x∗1 = ρ1
k

. The fixed point is thus (x1, x2)∗ =
(
0, ρ2

k

)
for C ∈

[
−1, β−k

β+k

)
and (x1, x2)∗ =(

ρ1
k
, 0
)

for C ∈
(
−β−k
β+k

, 1
]
.
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8.4.3 Piecewise linear: Lower Cut-Off

When we use the piece-wise linear function Eq. (8.22), we once again obtain a unique
and stable fixed point for the k > β case. The fixed point is the same as in the linear

and truncated activation cases when C ∈
(
β−k
β+k

,−β−k
β+k

)
(Fig. 7, middle panel, left).

When C ∈
[
−1, β−k

β+k

]
, then x1 ≤ 0, x2 > 0 and hence f(x1) = 0 and f(x2) = x2.

Thus solving the nullclines,

kx1 + βx2 = ρ1

kx2 = ρ2 (8.37)

we obtain the fixed point (x1, x2)∗ =
(
ρ1k−ρ2β

k2 , ρ2
k

)
.

Similarly when C ∈
[
−β−k
β+k

, 1
]
, then x1 > 0, x2 ≤ 0 and thus f(x2) = 0 and

f(x1) = x1, we solve the nullclines,

kx1 = ρ1

kx2 + βx1 = ρ2 (8.38)

We obtain the corresponding fixed point (x1, x2)∗ =
(
ρ1
k
, ρ2k−ρ1β

k2

)
.

8.4.4 Threshold Linear: Upper and Lower Cut-Offs

The derivations for the Lower Cut-Off case can be repeated in order to determine
the stable unique fixed point for the case when f is the threshold linear function
Eq. (8.21), as long as x1, x2 ≤ 1. That is, f is the identity function except for a
lower cut-off at 0 and an upper cut-off at 1. The same fixed points are obained for
the corresponding values of C (Figs. 7,middle panel, right). However, ignoring the
conditions ρ1 + ρ2 = 1, ρ1, ρ2 ∈ [0, 1],we can derive additional possible values that
the fixed point can assume. Specifically, if x1, x2 > 1, then f(x1) = f(x2) = 1 and
the nullclines of Eq. (8.3) yield

kx1 + β = ρ1

kx2 + β = ρ2 (8.39)

Solving this system gives us the fixed point (x1, x2)∗ =
(
ρ1−β
k
, ρ2−β

k

)
. The fixed

point cannot attain this value under the above constraints and parameter choices,
since it requires ρ1, ρ2 > β + k or equivalently,
ρ1 + ρ2 > 2(β + k) > 1. When x1 > 1 and x2 < 0 then f(x1) = 1 and f(x2) = 0.
Then the nullclines reduce to

kx1 = ρ1

kx2 + β = ρ2 (8.40)
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This yields the fixed point (x1, x2)∗ =
(
ρ1
k
, ρ2−β

k

)
. Similarly, the symmetric condi-

tion of x1 < 0, x2 > 1 yields the fixed point (x1, x2)∗ =
(
ρ1−β
k
, ρ2
k

)
. This value of the

fixed point is also not possible under the current constraints and parameterization.
Finally, when x1 > 1 and 0 < x2 < 1, then f(x1) = 1 and f(x2) = x2 and the
nullclines give

kx1 + βx2 = ρ1

kx2 + β = ρ2 (8.41)

which yield the fixed point (x1, x2)∗ =
(
ρ1k−ρ2β+β2

k2 , ρ2−β
k

)
. The symmetric condition

0 < x1 < 1, x2 > 1 yields the fixed point (x1, x2)∗ =
(
ρ1−β
k
, ρ2k−ρ1β+β2

k2

)
. As in the

case above, the fixed point cannot attain this value under the current parameteriza-
tion and constraints. Later, we may alter the constraints to enable the fixed points
to attain these values.

8.4.5 Logistic

The non-linear LCA model Eq. (8.3) with f as the logistic function Eq. (8.20) and
gain g = 1 always has a stable, unique fixed point irrespective of the relative values of
k and β(Fig. 7, bottom panel). It is not true that for corresponding values of C, the
fixed point lies in the same quadrant as the stable, unique fixed point for the lower
cut-off and upper and lower cut-off cases. Henceforth we do not separately include
the logistic case in our discussion of the phase-plane dynamics of the different LCA
models when λ = 0 or λ > 0.
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Figure 7: Phase-Plane for the Leak Dependent LCA, i.e.,when λ = β − k < 0 and
Coherence C ∈

(
β−k
β+k −

β−k
β+k

)
.Y-axis represents the activity of the decision variable or

input-current x2 and the x-axis represents the activity of the decision variable x1. The
decision line given by Eq. (8.28) is represented by a solid blue line. Brown and green
curves correspond to the nullclines for x1 and x2 respectively. A point of intersection of
the nullclines yields a fixed point. Dashed lines represent the orthogonally transformed
coordinates y1 = x1 − x2 and y2 = x1 + x2. The red trace represents a trajectory with the
initial conditions x1(0) = x2(0) = 0.Upper left: Linear; Upper right: Truncated Activation;
Middle left: Lower Cut-Off; Middle right: Upper and Lower Cut-Offs; Bottom: Logistic
LCAs.
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8.4.6 Trajectories of the Leaky Competing Accumulators

The trajectories of the LCA models, with different input-ouptut functions considered
above, are similar to one another when the LCA is leak dependent. Fig. 8 shows the
trajectories of the decision variables x1(t), x2(t). These represent the values of the
input-current during the course of a single trial. Transforming these using the input-
output functions f yield the firing-rates. In order for a decision to be rendered, the
firing rates for a neural population selective for one direction of motion (leftward or
rightwards) should exceed those of the one selective for the opposite direction. For the
Leaky Competing Accumulator model, this corresponds to f(x1(t)) > f(x1(t)) or vice
versa. With the functions considered above if x1(t) > x2(t) then f(x1(t)) > f(x1(t))
and vice versa. Thus it suffices to study only the dynamics of the decision variables
x1(t), x2(t), representing the dynamic input-currents of the two populations.

Figure 8: Trajectories of the Leaky Competing Accumulators for a Leak Dependent LCA,
i.e. λ = β − k < 0 when Coherence C ∈

(
β−k
β+k −

β−k
β+k

)
. Blue and green curves represent

the trajectories of the decision variable x1 and x2 respectively.

When the motion strength is weak, that is, C ∈
(
β−k
β+k

,−β−k
β+k

)
, then the trajecto-

ries reach the stable fixed point (x∗1, x
∗
2) =

(
ρ1k−ρ2β
k2−β2 ,

ρ2k−ρ1β
k2−β2

)
on the phase plane. The

difference between x1 and x2 at steady state is very small (Fig. 8). In the presence of
noise, it would not be possible to pre-determine which accumulator would win, that
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is whether the decision will be left or right. Electrophysiological recordings from the
LIP illustrating the time-course of neural firing-rates in the two populations indicate,
as discussed in Section 5 (Fig. 5), that the firing rate of the population selective for
motion in one direction ramps up while that for the other direction decays or gets in-
hibited to baseline, as the decision is rendered. However, we observe that this cannot
be replicated in our LCA model when it is Leak dependent and small coherences in
this particular regime. The winner-take-all-dynamics of one accumulator winning in
its evidence accumulation and the other losing, is not possible in this regime. Thus
a categorical choice between two competing alternatives is not possible in this case.

For larger coherences, C ∈
[
−β−k
β+k

, 1
]
, trajectories move to unique, stable a fixed

point with x1 > x2. For all the different types of LCA models considered above, the
losing accumulator has a negative input-current (except for the truncated activation
function where the firing rates are equal to the input current and are clamped to
zero should they fall below it).The firing-rates for one neural population ramp up
while those of the other population decay to baseline. Thus, for a sufficiently large
strength of the stimulus motion, winner-take-all competition is possible in a leak
dependent LCA model and a categorical decision is rendered.

8.5 Balanced LCA: β = k, λ = 0

8.5.1 Linear

When λ = β− k = 0 and f is linear, then Eq. (8.3) has no fixed points when C 6= 0.
In the noise-free process considered here, trajectories move to the decsion line and
move along it. However, when C = 0 or equivalently ρ1 = ρ2, then every point is a
fixed point.

8.5.2 Piecewise Linear: Lower Cut-Off

There are stable, fixed points when f is the lower cut-off function. If C ∈ (0, 1]
then the corresponding fixed point is (x1, x2)∗ =

(
ρ1
k
, ρ2k−ρ1β

k2

)
where x∗1 > 0, x∗2 < 0.

Symmetrically, when C ∈ [−1, 0) then the corresponding fixed point is (x1, x2)∗ =(
ρ1k−ρ2β

k2 , ρ2
k

)
where x∗1 < 0, x∗2 > 0. When C = 0, every point on the decision line

between
(
0, ρ2

k

)
and

(
ρ1
k
, 0
)

is a fixed point.

8.5.3 Threshold Linear: Upper and Lower Cut-offs

The phase-plane dynamics are similar to that of the Lower Cut-off case when f is
the Upper and Lower Cut-off function Eq. (8.21), under the current constraints and
parameterization.
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Figure 9: Phase-Plane for the Balanced LCA, i.e.,when λ = β − k = 0 and Coherence
C ∈ (0, 1]. Y-axis represents the activity of the decision variable or input-current x2 and
the x-axis represents the activity of the decision variable x1. The decision line given by
Eq. (8.28) is represented by a solid blue line. Brown and green curves correspond to the
nullclines for x1 and x2 respectively. A point of intersection of the nullclines yields a fixed
point. Dashed lines represent the orthogonally transformed coordinates y1 = x1 − x2 and
y2 = x1 + x2. The red trace represents a trajectory with the initial conditions x1(0) =
x2(0) = 0.Upper left: Linear; Upper right: Truncated Activation; Middle left: Lower
Cut-Off; Middle right: Upper and Lower Cut-Offs; Bottom: Logistic LCAs.
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8.5.4 Trajectories of the Leaky Competing Accumulators

Figure 10: Trajectories of the Leaky Competing Accumulators for a Balanced LCA, i.e.
λ = β−k = 0 when Coherence C ∈ (0, 1]. Blue and green curves represent the trajectories
of the decision variable x1 and x2 respectively.

The trajectories of the LCA models, with different input-ouptut functions con-
sidered above, differ from each other when the decay in activation of an accumulator
caused by the leak is balanced by the enhancement in activation resulting from the
inhibition of the other accumulator, that is, when the LCA is balanced. Fig. 8.5.4
shows the trajectories of the decision variables x1(t), x2(t) over the course of a trial.

When the input-output function is linear, the system does not have any fixed
points. The input currents or the firing-rates increase or decrease without bound
(Fig. 8.5.4, top left panel). On the phase plane, trajectories rapidly approach the
decision-line and proceed along it, such that, in the absence of noise, for any coherence
favoring a decision unit (C > 0 if accumulator 1 is favored and vice versa), firing rates
for this continue to ramp up whereas those for the other continues to ramp down,
such that a categorical choice is made. The linear model is particularly useful in a
Reaction Time task described in Section 4 (Fig. 1 A)or the Free-Response paradigm,
where its reduction to a 1-dimensional DDM (8.12) can be used to model Reaction
Time distributions [17, 18, 19, 20]. When C = 0, there is no drift. Every point on
the phase-plane is a fixed point. In that case, noise is required for decision-making
to take place.
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For the progressively non-linear LCA models, trajectories move along the decision
line to reach a fixed point with x1 winning whenever coherence is positive and vice
versa for x2. The input currents and consequently the firing rates therefore reach
steady state and do not increase or decrease without bound (Fig. 8.5.4).

8.6 Inhibition Dependent LCA: β > k, λ > 0

8.6.1 Linear

As in the case for β < k, solving the system (8.29) yields the unique fixed point

(x1, x2)∗ =
(
ρ1k−ρ2β
k2−β2 ,

ρ2k−ρ1β
k2−β2

)
. Note that this fixed point is always unstable.

Similarly, the unique fixed point can be in one of 3 quadrants, depending on the

value of C and hence ρ1 and ρ2. We observe that x∗1, x
∗
2 > 0 when C ∈

(
−β−k
β+k

, β−k
β+k

)
.

x∗1 ≤ 0, x∗2 > 0 when C ∈
[
β−k
β+k

, 1
]
. Finally, x∗1 > 0, x∗2 ≤ 0 when C ∈

[
−1,−β−k

β+k

]
.

For our chosen parameter values of k = 1, β = 0.5, β−k
β+k

= 1
5
.

8.6.2 Piecewise Linear: Lower Cut-Off

When β > k and the lower cut-off function Eq. (8.22) is used, then the system
given by Eq. (8.3) may, depending on the value of the paramter C have 1, 2

or 3 fixed points. When C ∈
(
−β−k
β+k

, β−k
β+k

)
, there are 3 fixed points: (x1, x2)∗ =(

ρ1k−ρ2β
k2−β2 ,

ρ2k−ρ1β
k2−β2

)
corresponds to the fixed point in the positive quadrant. It can be

shown that this is a saddle point. When x∗1 < 0, x∗2 > 0 then (x1, x2)∗ =
(
ρ1k−ρ2β

k2 , ρ2
k

)
.

Similarly when x∗1 > 0, x∗2 < 0 then (x1, x2)∗ =
(
ρ1
k
, ρ2k−ρ1β

k2

)
. We can show that the

latter 2 fixed points are sinks. For C ∈
(
−1,−β−k

β+k

)⋃(β−k
β+k

, 1
)

Eq. (8.3) has a stable

single fixed point. The fixed point is (x1, x2)∗ =
(
ρ1k−ρ2β

k2 , ρ2
k

)
when C ∈

(
−1,−β−k

β+k

)
and is (x1, x2)∗ =

(
ρ1
k
, ρ2k−ρ1β

k2

)
when C ∈

(
β−k
β+k

, 1
)

. For C = −β−k
β+k

there are 2 fixed

points,
(
ρ1
k
, 0
)
, which is a bifurcation point and the stable fixed point

(
ρ1k−ρ2β

k2 , ρ2
k

)
.

Symmetrically when C = β−k
β+k

there the corresponding fixed points are
(
0, ρ2

k

)
and(

ρ1
k
, ρ2k−ρ1β

k2

)
.

8.6.3 Threshold Linear: Upper and Lower Cut-Offs

Under the current parameterization and constraints, the phase-plane analysis for the
Upper and Lower Cut-Offs case is similar to that of the Lower Cut-Off case above.
The solutions for x1(t) and x2(t) are therefore similar in both cases.
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Figure 11: Phase-Plane for the Inhibition Dependent LCA, i.e.,when λ = β − k > 0
and Coherence C ∈

(
β−k
β+k −

β−k
β+k

)
.Y-axis represents the activity of the decision variable or

input-current x2 and the x-axis represents the activity of the decision variable x1. The
decision line given by Eq. (8.28) is represented by a solid blue line. Brown and green
curves correspond to the nullclines for x1 and x2 respectively. A point of intersection of
the nullclines yields a fixed point. Dashed lines represent the orthogonally transformed
coordinates y1 = x1 − x2 and y2 = x1 + x2. The red trace represents a trajectory with the
initial conditions x1(0) = x2(0) = 0.Upper left: Linear; Upper right: Truncated Activation;
Middle left: Lower Cut-Off; Middle right: Upper and Lower Cut-Offs; Bottom: Logistic
LCAs.
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8.6.4 Trajectories of the Leaky Competing Accumulators

The trajectories for the different LCA models differ when β > k. Solutions for x1

and x2 diverge rapidly for the linear LCA system since mutual inhibition exceeds
leak, and the fixed point is a saddle. A negative input-current value of the losing
accumulator boosts that of the winner through the −βxj term since it, in effect
involves the subtraction of a large negative term and thus the addition of a large
positive term. The losing accumulator on the other hand, becomes more negative
owing to the subtraction of a large positive term. This scenario is avoided in the
truncated activation case, where the losing accumulator is clamped at zero. Under
the current parameterization and constraints, the dynamics for the lower cut-off and
upper cut-off cases are similar. Once again, solutions for the winning accumulator
are similar for the truncated activation, lower cut-off and upper and lower cut-off
conditions, since non-positive input current values of the losing accumulator do not
affect the winning accumulator. Obviously, the rate of divergence of the solutions
depends on the magnitude of C with faster divergence for larger values of |C|.

Figure 12: Trajectories of the Leaky Competing Accumulators for an Inhibition Dependent
LCA, i.e. λ = β − k > 0 when Coherence C ∈

(
β−k
β+k −

β−k
β+k

)
. Blue and green curves

represent the trajectories of the decision variable x1 and x2 respectively.

The existence of 3 fixed points for the lower cut-off and the upper and lower cut-

off functions when coherences are small, that is, C ∈
(
−β−k
β+k

, β−k
β+k

)
, with the fixed
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point in the positive (first) quadrant being a saddle and those in the second and
fourth quadrants being sinks enables winner-take-all-competition between the two
decision making accumulators. (Fig. 12). When the trajectories are far from the
saddle point, x1 = x2 and hence the firing rates of the neural populations selective
towards the two alternative directions would be equal. Near the saddle point, the
two firing-rates split with slow dynamics owing to dxi

dt
being approximately equal

to zero. The firing-rates then rapidly diverge as the input current and hence the
firing rate of one population ramps up to a stable steady state whereas those of the
other poupulation are inhibited to a stable baseline. Since the other fixed points are
sinks, depending on whether the coherence is positive or negative, the trajectories
are rapidly attracted to them (x∗1 > x∗2 for small positive coherences and vice versa
for small negative coherences).

For larger values of |C|, the dynamics are similar to the case when the LCA is
balanced and coherence is non-zero, except that the firing rates diverge faster.

8.7 Deterministic Leaky Competing Accumulator Model: Sum-
mary

In the subsections above, we analyzed the dynamics of the LCA model in the absence
of noise, for progressively non-linear input current-output firing-rate functions. We
also studied the model’s dependence on its parameters, namely the leak k and the
inhibition β. Specifically, there existed three types of LCAs: Leak dependent (β < k),
Balanced (β = k) and Inhibition dependent (β > k). Analyzing the phase-plane we
deduced closed form expressions for fixed points (f.p.s) in terms of the coherence
or motion strength C. Our deductions indicate that not only does the coherence
influence how fast neural firing rates ramp up or ramp down, but also whether winner-
take-all decision-making is possible. In addition, coherence may also determine the
number of fixed points possible and the stabitlity of each of those fixed points. For
each of the LCAs considered, we found a set of continuous coherence regimes, each
generating quantitatively different behaviors on the phase-plane. We noted that the
LCAs with a Truncated Activation function are similar to Linear LCAs, except for a
clamping of firing-rates to zero should they become negative. The LCA models using
a Threshold Linear: Upper and Lower Cut-Off function were similar to those using
the Piecewise Linear: Lower Cut-Off functions, except for a set of outer fixed points,
which were not attainable under the constraints of the LCA models. We therefore
summarize our results for the LCAs employing a Linear and Piecewise Linear: Lower
Cut-Off function in Table 8.7.

Note that all three types of LCA models employing a logistic function with a gain
or slope of 1, always had a stable fixed point irrespective of the relative magnitudes of
Leak and Inhibition. Balanced LCA models with a coherence of 0% have all points
on the phase-plane (atleast between two points on a line) becoming fixed points.
Specifically, stable fixed points in quadrant II (x2 > x1) or IV (x1 > x2) enable
winner-take-all dynamics such that one evidence accumulator wins and the other
loses and a categorical decision is thereby made. A fixed point which is a saddle
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LCA Type Linear Lower Cut-Off

Leak Dependent Unique Stable f.p. Unique Stable f.p.
Balanced No f.p. (C 6= 0) Unique Stable f.p. (C 6= 0)

Inhibition Dependent Unique Unstable f.p. 1,2 or 3 f.p.s, either sinks or saddles.

Table 1: Summary of Deterministic LCA models.

causes trajectories to diverge off rapidly from it, enabling fast ramping up of activity
for the winning accumulator or neural population and a similarly fast ramping down
for the losing population. Such a scenario is obtained for an inhibition dependent
LCA model. Our results thus indicate that among the LCA models considered here,
an inhibition dependent LCA model represents the most neurally plausible decision-
making process.

8.8 Stochastic System

Considering the Leaky Competing Accumulator to be non-deterministic as in Eq.
(8.3), we shall compare p(y1, t) for each of the input-output functions, with the the-
oretical result in Eq. (8.14). Specifically, we should observe a unimodal distribution
with its mean at the unique fixed point when β < k and bimodal distribution with
modes at the fixed points when β > k.

8.9 LCA models with Recurrent Self-Excitation: α 6= 0

After understanding the dynamics of the relatively mathematically tractable LCA
model considered in Eq. (8.3), we shall gradually increase the degree of complexity
[10, 28, 4] by considering the complete LCA model described in (8.1). Previously,
we had ignored further non-linearities by setting α = 0 as in [8, 6], but we shall now
include α > 0 with the constraint k = δ−α. Crucially, such recurrent self-excitation
is important in maintaining spontaneous steady states in biologically realistic models
of decision making, such as those discussed below. The reduction in the input current
due to the leak k is compensated by the recurrent self-excitation α. The trajectories
remain at the spontaneous steady states, enabling the network to display features
characteristic of working-memory. We shall compare all results discussed above for
system (8.3) with those for system (8.1). We shall also include non-zero base-line
activities by varying the shift b for the various input-output functions.

8.10 Gain Modulation

In the input current-output firing rate functions described above, g denoted the slope
of the function. Gain modulation refers to changing the amplitude of firing rates for
a particular stimulus [25, 26]. In the case of the LCA, this can be achieved by varying
the slope or gain g of each of the input-output functions described above [8, 7]. In
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particular, previous research [8, 7] has suggested that the release of the neuromodu-
lator norepinephrine from the locus coeruleus has a possible role in modulating such
gain. We shall thus examine the effect of varying g on the dynamics of the LCA
model by analyzing the phase plane in each case.

Lastly, we shall vary the gain g and/or change the non-linearity of the input-
output function within a trial itself and examine the effects of such manipulations
on the phase-plane dynamics. We shall then compare simulation results of accuracy
and RT distributions with theoretical predictions, in an effort to reconcile simulation
results with phase-plane analyses.
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9 Gain Modulation in a Non-Linear Neurally Plau-

sible Model of Perceptual Decision Making

Whereas the LCA and OU models can account for behavioral data, time-courses ob-
tained from electrophysiological recordings can be more closely captured by neurally
realistic models which use parameters and constraints imported from neurophysio-
logical data. Such models may comprise networks of thousands of spiking neurons
interacting with one another, leading to numerous non-linearities and consequent
complexities [36]. These models may be reduced through mean-field approaches,
which still ensure that a large number of neurophysiological effects are accounted for
[40].

Previous work attempting to model the time course of neural firing rates in area
LIP have sought to replicate the ramping up of firing rates for the selective neural
population accompanied by an inhibition of those for the non-selective population
during the stimulus motion period [36, 40, 13] (Fig.5 C). Recent biophysically realistic
modeling work has strived to understand the patterns of neural firing over the course
of an entire trial, consisting of the fixation, target and stimulus motion periods Fig.
(1 A, B), up until a decision is rendered. Firing rates of both the neural populations
selective towards their corresponding directions of motion are observed to increase
during the target motion period. The targets consist of spots of light placed inside
or away from the response fields of the recorded neurons. Neural firing rates for
both populations are then observed to decay until they reach a steady firing rate.
However, they are also observed to dip together to the same firing level prior at
the onset of the dot-motion stimulus. Subsequently, they are observed to diverge as
described above. Recent modeling work has been able to accommodate this pattern
of firing rate activity by positing that the onset of the stimulus motion switches the
primate’s attention from the targets to the dot-motion stimulus [39]. Particularly,
this is posited to result in a decrease in input currents owing to the encoding of
the target, as described in subsection 9.1. We provide a detailed description of this
biophysically reaslistic model and its dynamics in that subsection, before modifying
and extending it in subsequent subsections.

Modulating the input currents seem a less plausible mechanism considering the
targets remain clearly visible on the screen (Fig.1 A, B) even during the stimulus
motion period. Gain modulation offers and alternative yet neurally plausible mech-
anism for explaining the mutual effects of attention and decision making. We posit
that such an interaction between attention and decision-making, manifest in the gain
modulation of single neurons in the LIP, enables the pattern of neural firing activ-
ity observed in electrophysiological experiments. We discuss this mechanism in the
subsection 9.4. We perform phase plane analyses, similar to our analyses for the
LCA models, but for a deterministic biophysically realistic model, when neural gain
is kept constant or modulated dynamically over the course of a trial.

We deduce that an attention mediated increase in gain (slope of the input-output
function) for excitatory populations only prevents winner-take-all-competition, which
is necessary for categorical perceptual decision-making. We explain how the modu-
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lation of both excitatory and inhibitory neural populations serves as a mechanism
for not only enabling categorical choice, but also flexible decision-making. Such a
neurally plausible mechanism accounts for firing rate data observed in both Reaction
Time and Fixed Viewing Duration decision making tasks.

9.1 Reduced Two-Variable Biophysically Realistic Model

The biophysically realistic model of Wang [36] comprised 2000 spiking neurons and
7200 dynamical equations. The decision network consisted of two neural popula-
tions selective towards the two alternative directions of motion, left and right, a
non-selective population, selective towards neither direction of motion and a popu-
lation of inhibitory interneurons. The two selective populations receive inputs from
the MT and each population possesses recurrent self-excitatory connections. Ap-
plying a mean-field approach, this spiking neuron model can be reduced to a four-
variable model. Employing a simplified input-output function [40], linearizing the
input-ouput function for inhibitory interneurons and assuming constant firing activ-
ity of the non-selective population, the network is further reduced to a three-variable
model. If all fast variables are assumed to reach steady state early, the effects of
AMPA synapses on the selective populations can be neglected and the network be-
comes the reduced two-variable (Fig. 13) that we shall henceforth discuss.

The function relating the input synaptic current Ii to the output firing rate ri of
the two selective neural pools is given by

ri = f(Ii) =
aIi − b

1− exp [−d(aIi − b)]
(9.1)

where i is either L(representing leftward) or R(denoting rightward), a = 270 Hz/nA,
b = 108 Hz and d = 0.154s. Then the two-variable model is given by the system

IL,tot = JLLSL − JLRSR + Imotion,L + Itarget + Inoise,L

IR,tot = JRRSR − JRLSL + Imotion,R + Itarget + Inoise,R (9.2)

where SL and SR are the dynamic variables of the system, representing synaptic gat-
ing variables for neurons selective for leftward and rightward directions of motion.
The synaptic couplings JLL = JRR = 0.3725 nA represent recurrent self-excitation
and JLR = JRL = 0.1137 nA represent mutual inhibition. Imotion,i represents the in-
put from the dot-motion stimulus. The current Itarget represents the encoded targets,
which are spots of light placed inside or away from the response fields of the neurons
in a population. The neural populations receive noisy background synaptic inputs,
which are modeled by a mean input I0 and a fluctuating white noise component
filtered by a synaptic time constant τnoise.

τnoise
dInoise,i(t)

dt
= − (Inoise,i(t)− I0) + σnoise

√
τnoiseN(0, 1) (9.3)

where σnoise = 0.009 nA and τnoise = 2 ms. We further assume that the network
dynamics is dominated by Si, which have slower time constants than the firing rates
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Figure 13: A reduced biophysically realistic decision- making network model. (A) The
network consists of two units, representing two competing neural pools selective for left-
ward and rightward motion, respectively. Each is endowed with strong self-excitatory
recurrent coupling (sharp arrowheads). Cross-coupling between the two units is effectively
inhibitory (circular arrowheads), through a shared inhibitory neural pool which is not ex-
plicitly represented in this reduced model. IL (IR) encompasses the external inputs from
motion-selective (MT) neurons, target-sensitive neurons, and background neurons. (B)
Inputs to the decision units within a trial consist of both target stimulus inputs (dashed
line) and motion stimulus from the random-dots (bold line; shown here with zero motion
coherence). According to the model, the target inputs are reduced when the random-dot
motion appears because attention is directed to the motion. (C) The directional input
comes from MT cells, whose firing rates depend linearly on motion coherence. Coherent
motion toward (opposite) the response field, RF, increases (decreases) the cell’s output
firing rate. Reproduced from [39].
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ri. That is, we assume that ri have already attained their steady-states while the Si
have not. Then the dynamics of Si are governed by

dSi
dt

= −Si
τS

+ (1− Si)γf(Ii) (9.4)

where γ = 0.641 and τs = 60 ms. Firing rates of neurons in the MT, selective for
a particular direction of motion, increase roughly proportional to the coherence or
motion strength when the motion is in the preferred direction for the neuron. Thus
the input current encoding stimulus motion, which is relayed to the LIP decision
neurons is given by

Imotion,i = JAµ0

(
1 + κ

c

100

)
(9.5)

where κ = 0.45 is a stimulus-signal gain parameter, JA = 1.1×10−3 nA/Hz, µ0 = 30
Hz and c ∈ [−100, 100]. A transient decay of the firing rates of MT neurons during
stimulus presentation is neglected for the sake of simplicity.

The input current due to the encoded target can be modeled as

Itarget =


0 t < ttarget

JA

(
50 + 100 exp

[
− (t−ttarget)

τad

])
, ttarget ≤ t ≤ tmotion

JA

(
6 + 44 exp

[
− (t−tmotion)

τad

])
, t ≥ tmotion

(9.6)

where ttarget and tmotion are the onset times of the targets and dot-motion stimuli,
respectively. This input current has a short-time adaptation, represented by a decay
with a time constant of τad = 40 ms.When the non-linear Input Current-Output
Firing-Rate function given by Eq.(9.1), this yields high firing-rates when the targets
are first presented. The firing rates decay with a short-time adaptation, with the
input current due to the target reaching a steady level at JA × 50 nA. During the
stimulus motion period, the input current due to the target again decays, from
JA× 50 nA to an eventual steady state of JA× 6 nA. This manipulation is explained
as resulting from a shift in attention from the targets to the stimulus motion. In the
next subsection, we argue that it is this dip in target input current, together with
the onset of stimulus that enables the network to make a categorical decision.

9.2 Phase-Plane Analysis of Reduced Two-Variable Biophys-
ical Model with Attention Mediated Changes in Target
Input Currents

Using the non-linear Input Current-Output Firing-Rate function given by Eq.(9.1),
we can analyze the phase-plane during different periods over the course of a trial.

The steady states of the deterministic form of system (9.4) can be obtained by
solving for the nullclines

−Si
τS

+ (1− Si)γf(Ii) = 0 (9.7)
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Figure 14: Reconfiguration of the decision network during different epochs of a trial.
Phase planes show the nullclines of the population firing rates selective to leftward (rL)
and rightward (rR) motion, represented by orange and green lines. Black (brown) filled
circles are the stable (unstable) steady-states of the network. Black lines with direction of
arrows toward and away from the saddle point yield the stable and unstable manifolds of
the saddle point. Gray region is the basin of attraction of the spontaneous state in (A), or
that of the symmetrical stable state in (B). (A)Without visual target nor motion stimulus
input to decision network. (B) With target input only. Steady-states after adaptation.
(C) With both (reduced) saccadic target input and motion stimulus of zero coherence.
(D) With both (reduced) saccade target input and motion stimulus of 12.8% coherence.
Reproduced from [39].
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In the absence of any target or motion-stimulus inputs, the network possesses
three stable steady states, represented by black dots in Fig. 9.2A. These include
the spontaneous, symmetrical steady state with low firing rates rL = rR, and the
assymetric, persistent steady states. The co-existence of these steady states allows
the network to exhibit working-memory capabilities. A transient stimulus switches
the network from the resting state to one of the two persistent steady states. Since
the persistent, off-diagonal steady states are stable, the decision is self-sustained,
and retained in working memory. The stable manifolds for the saddle points of the
network during this epoch separate the phase plane into basins of attraction. The
grey region represents the basin of attraction for the symmetric steady state with a
low firing rate. When the target appears, both selective populations receive a high
input current, which pushes the network to now have a high symmetrical, stable,
steady state with rL = rR ≈ 37.5 Hz (Fig. 9.2B). The large basin of attraction
ensures that winner-take-all-competition is reduced and the network remains in this
symmetrical, high firing-rate condition during target presentation. The reduction in
input current due to the target owing to a shift in attention from the target to the
input stimulus, together with the onset of the stimulus reconfigures the network such
that there are only two stable steady states: the asymetrical, off-diagonal, persistent
steady states. The symmetric steady state now becomes a saddle, allowing winner-
take-all competition and decision-making to take place. For a coherence of 0 %, the
basins of attraction for both persistent states are equal (Fig. 9.2C). For coherences
favoring the leftward direction, the basin of attraction for rL is much larger than
that for rR (Fig. 9.2D). In the presence of noise, correct decisions involve sample
paths remaining within this basin.

9.3 Firing Rates of the Two Selective Populations

The target and motion stimulus input currents and the consequent firing rates of
the two neural pools are shown in Fig. 13. The firing rates of both pools increase
rapidly at target presentation, decaying with the passage of time. After stimulus
presentation, attention is shifted from the targets to the stimulus motion, leading to
a dip in the firing rates of both pools. The firing rates then separate as observed by
the ramping up to threshold for one pool and simultaneous inhibition to baseline of
the other.

When we average over many trials or consider the system to be noise-free and thus
deterministic, we observe that this splitting of the firing rates for the two pools occurs
at a firing rates less than the maximum firing rate attained when only the target
is on. This corresponds to observations (Fig. 15) from most electrophysiological
experiments using the dot-motion task [22, 29, 13]. However, in some experiments
employing the Reaction Time task [22], this splitting was observed at firing rates
greater than the steady state firing rate attained when only the target is presented
(Fig. 5 C).

Performing the phase plane analysis above considering symmetric inputs IL = IR,
we can vary µ0 in Eq. (9.5) to get the bifurcation diagram, ri = f (Ii(Si,j)). We
shall obtain a mushroom shaped diagram, with a saddle corresponding to the time
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Figure 15: Neural dynamics of the decision network model. (A) Top: A sample trial
with zero motion coherence. During target presentation, both neural pools (black and
orange lines) achieve a relatively high steady state firing rate, similar to the observation
of LIP neurons. During motion stimulus presentation (gray box), the firing rates of the
two neural pools first increase together, then diverge over time, one ramping up whereas
the other ramping down, resulting in a categorical choice (the decision bound is fixed at
55 Hz). Bottom: inputs. The target input represents static visual stimulus inputs with
adaptation, as observed in experiments. The motion stimulus resembles the output firing
rates of MT neurons. Note that in order to reproduce the dip immediately in neural activity
immediately after motion stimulus onset, the target input is assumed to decrease (due to
divided attention) after the motion stimulus onset but before the motion signals reach the
LIP neurons. (B) Trial-averaged neural activities of the two neural pools with five motion
coherence levels. Solid curves: winning population; dashed curves: losing population. Time
courses of neural activity are aligned at the time of motion onset. Note slower ramping
activity at a lower motion coherence. Only correct trials are shown. Reproduced from [39].

and firing rate at which this splitting occurs There are also stable fixed points
when ttarget ≤ t ≤ tmotion and when t < ttarget. Owing to the monotonicity of
the unstable manifold, rL/R(ttarget) > rL/R(tsplitting), corresponding to the observa-
tion in most electrophysiological experiments. In order to account for the results
in from some experiments employing the Reaction Time task [22], we would want
rL/R(ttarget) < rL/R(tsplitting). This however, cannot be achieved with the present
model. We posit that modulating the gain of the input-out functions provides a
mechanism for achieving this.

In addition, the fact that the two targets stay on during the course of a trial lends
credence to the notion that the input currents due to the targets should remain at
their steady state value of JA×50 nA instead of further decreasing when the motion
stimulus is present. Wong et al [39] explained this dip in input current as representing
an attentional shift from the target to the dot-motion stimulus. However, as we
demonstrate in subsequent subsections, the dip in neural firing rates can be achieved
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by changing the gain of both the selective populations and the inhibitory populations
that were explicitly present in the spiking neuron model of Wang [36] but implicitly
respresented through the synaptic coupling constants JLL, JRR, JLR and JRL. In
the following subsection, we discuss such attention mediated gain modulation as a
putative mechanism affecting decision-making.

9.4 Attention Mediated Gain Modulation

As discussed in Subsection 9.3 the fact that the two choice targets remain on, clearly
visible on the screen even during the presentation of the dot-motion stimulus indicates
that the current due to the target Itarget should remain constant at its previous steady
state value over the course of the motion stimulus and not decay further. Accordingly
we alter Eq. (9.6) to

Itarget =

{
0 t < ttarget

JA

(
50 + 100 exp

[
− (t−ttarget)

τad

])
, t ≥ ttarget

(9.8)

When the stimulus motion comes on, the net current due to the target and mo-
tion increases. Whereas it was possible to reconfigure the decision-making network
to exhibit winner-take-all-competition involved in making a categorical choice when
Itarget was given by Eq. (9.6), using Eq. (9.8) necessitates an alternative mecha-
nism for simulating both the dip in firing rates and winner-take-all-dynamics. Gain
modulation offers one such mechanism.

9.4.1 Attention Mediated Gain Modulation in the LIP during Perceptual
Decision-Making

In order to incorporate the effects of attention mediated gain modulation of the
selective neural populations in the LIP, Eq. (9.1) in our reduced two-variable can be
approximated as

ri = f(Ii) =
gEaIi − b

1− exp [−d(gEaIi − b)]
(9.9)

where as before, i is either L(representing leftward) or R(denoting rightward), a =
270 Hz/nA, b = 108 Hz and d = 0.154s. gE represents the slope or gain of the input
current-output firing rate transfer function (Fig. 16), and gE = 1 for the dynamics
described in previous sections.

Gain modulation of the selective populations can be accomplished in several ways,
the simplest of which is to use a larger value of g but using g(t) = g, for all t. A larger
value of g(t) = g yields unrealistically high firing rates during the target period and
thus such a manipulation cannot be neurally implemented.

Alternatively, we could modulate the gain at the onset of the motion stimulus,
according to

gE =

{
gE1 , t < tmotion
gE2 , t ≥ tmotion

(9.10)
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Figure 16: Gain modulation of input current-output firing rate transfer function

Varying the gain from gE1 = 1 to gE2 > gE1 at motion stimulus onset, enables higher
firing rates than previously achieved during the motion stimulus period. However, as
we discuss below this also reduces winner-take-all competition, preventing categorical
decision-making .

Figure 17: Time courses of firing rates for two selective populations with gain modulated
according to Eq. (9.10), with gE2 = 1 (left) and 1.1 (right), respectively. Note that the
although the firing rates are larger, winner-take-all-competition cannot be achieved as gE2

is increased from 1.

Thus, in order to ensure neurally realistic winner-take-all-competition, increasing
the gain of the direction selective, decision-making population should be accompanied
by increasing the gain of the inhibitory interneuron population originally present in
the spiking neuron model of Wang [36]. In the reduced, two-variable model these
are absorbed into the synaptic coupling constants: the recurrent self-excitations
JLL = JRR, and the mutual inhibitions JLR = JRL. Let JLL = JRR = α1 and
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JLR = JRL = α2. Then we can derive (not shown here) that,

α1 = kw+ −
k1cI

1 + k2cI

α2 = kw− −
k3cI

1 + k2cI
(9.11)

Then

α1 − α2 = k
′

w −
k
′
cI

1 + k2cI
, (9.12)

where all kws are constants. We thus observe that the effective synaptic couplings
depend on the gain cI of inhibitory neurons.

9.5 Phase-Plane Analysis with Attention-Mediated Gain Mod-
ulation of Excitatory and Inhibitory Neural Populations

In order to find the fixed points of the reduced two-variable system, we solve the
nullclines Eq. (9.7). As discussed in subsection 9.2, in the absence of any target or
motion-stimulus inputs, the network possesses three stable steady states, (Fig. 9.5,
Upper Left panel). These include the spontaneous, symmetrical steady state with
low firing rates rL = rR, and the asymetric, persistent steady states. The co-existence
of these steady states allows the network to exhibit working-memory capabilities as
a transient stimulus can switch the network from the resting state to one of the two
persistent steady states. The stable manifolds (separatrices) for the saddle points of
the network during this epoch separate the phase plane into basins of attraction. The
grey region represents the basin of attraction for the symmetric steady state with a
low firing rate. When the target appears, both selective populations receive a high
input current, which pushes the network to now have a high symmetrical, stable,
steady state with rL = rR ≈ 37.5 Hz (Fig. 9.5, Upper Right panel). The large basin
of attraction ensures that winner-take-all-competition is reduced and the network
remains in this symmetrical, high firing-rate condition during target presentation.

Consider coherence to be 0%, both selective populations receive equal input IL =
IR. Thus Imotion,L = Imotion,R. In the deterministic case, both populations receive a
constant background excitatory input I0E

. The symmetrical steady state that plays
the crucial role in decision-making shall have S∗1 = S∗2 .

−S
∗

τS
+ (1− S∗)γf(I) = 0

−S
∗

τS
+ (1− S∗)γf(JLLS

∗ − JLRS∗ + Imotion + Itarget + I0E
) = 0

−S
∗

τS
+ (1− S∗)γf ((α1 − α2)S∗ + Iext) = 0
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where α1 and α2 are given by Eq. (9.11) and their difference depends on the inhibitory
interneuronal gain given by Eq. (9.12).

Thus we observe that the symmetrical steady state depends both on the gain of
excitatory, selective populations gE2 and that of the inhibitory interneuronal popu-
lations cI . Implementing the input current-output firing-rate function given in Eq.
(9.1) restricts the firing rates from being too high, and is thus more neurally realistic.
Varying the gain gE2 for selective,excitatory populations at the onset of the motion
stimulus and allowing the system to reach steady-state, we can analyze the phase
plane. We consider the case of both populations receiving equal inputs, with c = 0%.
The following results were based on analysis conducted using the XPPAUT software.

When the motion stimulus is presented and the input current due to the target
remains at a steady state value, instead of decaying further, the network remains
stable if we increase only excitatory gain gE2 ≥ 1 (Fig. 9.5, Lower Left panel).
Thus, as we increase or keep the gain of the excitatory, selective populations con-
stant without simultaneously increasing the gain of the inhibitory populations, the
network loses its winner-take-all features and categorical decision-making does not
take. If we sufficiently increase the gains of both excitatory and inhibitory popula-
tions simultaneoulsy, then the network reaches a saddle point. Trajectories therefore
approach this saddle and then are attracted toward one of the persitent, off-diagonal
fixed points. Thus firing-rates shall rise together and then diverge as those for one
selective population ramps up while those for the other are inhibited down to base-
line. We have henced deduced that attention mediated gain modulation of both
excitatory, selective neurons and inhibitory interneurons in the LIP enables decision-
making in two alternative forced choice tasks. In addition, such a mechanism allows
the splitting of firing rates during the stimulus motion period to be at a higher level
than the firing-rates when only the target is present, as observed in Reaction Time
experiments [22].
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Figure 18: Phase planes show the nullclines of the population firing rates selective to
leftward (rL) and rightward (rR) motion, represented by orange and green lines. Points of
intersection of the nullclines yield the steady-states of the network. Blue curves represent
stable manifolds while yellow curves represent unstable manifolds of a fixed point. Blue
curves separate the phase plane into basins of attractions. Direction fields dictate the
trajectories of solutions starting from different intial conditions. Upper Left panel: Without
visual target nor motion stimulus input to decision network. Upper Right panel: With
target input only. Steady-states after adaptation. Lower Left panel: Stimulus period:
Steady target current, only increasing the excitatory gain according to Eq. (9.10), with
gE2 ≥ 1, without changing the inhibitory gain. Lower Right panel: Stimulus period:
Increasing both gE2 and cI , gE2 = 1.49 and cI = 2.30.
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Although we deduced this dependence on both excitatory and inhibitory neurons
in the case where coherence was 0 %, it also holds when the two selective popula-
tions receive unequal inputs, that is motion is predominantly towards one direction.
For instance with coherence is 12.8 % towards the left, we observe larger basin of
attraction for the neural population selective towards leftward saccades (Fig. 9.5).
In the presence of noise, this enables mor choices to be correct, that is, decisions
should correctly identify the direction of motion to be the left.

Figure 19: Phase-Plane shows the nullclines of the population firing rates selective to
leftward (rL) and rightward (rR) motion, represented by orange and green lines. Points of
intersection of the nullclines yield the steady-states of the network. Blue curve represents
a stable manifold while yellow curve represents an unstable manifold of a fixed point. Blue
curves separate the Phase-Plane into basins of attractions. Direction fields dictate the
trajectories of solutions starting from different intial conditions. Stimulus Period with
steady input current due to the target. Coherence 12.8 %, increasing both gE2 and cI .

Keeping µ0 and cI constant, we can study the effect of varying gE2 on the dynam-
ics of the network by exploring the bifurcation diagram, considering gE2 to be the
relevant parameter 9.5. We observe that when gE2 ≤ 0.835 only a single, stable fixed
point exists. When 0.835 < gE2 < 0.93 then the two asymetrical stable persistent
steady states remain along with two unstable fixed points. At gE2 = 0.84, a bifurca-
tion occurs, such that the network transitions to enable decision-making between two
alternatives. We obtain a symmetrical, saddle point along with the two persistent
states. This saddle branch is lower than the upper stable branch during the target
period. Another bifurcation occurs at gE2 = 0.94, such that the saddle becomes a
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stable fixed point and two unstable steady states are also obtained, reconfiguring the
network such that it is equivalent to the case when only the target is present, and
winner-take-all-competition along with categorical decision-making is prevented.

Figure 20: Bifurcation diagram with gE2 as the parameter, keeping cI = 1 and µ0 = 26
Hz fixed. Dark lines represent stable branches whereas light curves represent unstable
branches.

In similar fashion, we can investigate the bifurcation diagram by varying the
gain of the inhibitory interneuron population cI , which affects the synaptic coupling
constants, while keeping gE2 = 1 and µ0 = 26 Hz fixed (Fig. 9.5). Decreasing the
gain of inhibitory interneurons during the stimulus period without simultaneously
decreasing the gain of excitatory neurons reconfigures the network such that it attains
a symmetrical steady state and decision-making is not possible.

We have thus shown that attention mediated gain modulation of neurons in the
LIP serves as a putative, neurally plausible mechanism for enabling winner-take-
all-dynamics and categorical decision-making between two competing alternatives.
Specifically, we have demonstrated that such gain modulation is an alternative to
a reduction in input currents due to choice targets resulting from a shift in atten-
tion at stimulus motion onset, even when the choice targets remain clearly visible
on the screen. Gain modulation directly results in the modulation of firing rates
and not the direct modulation of input currents. Furthermore, both the gains of
excitatory, selective neurons and inhibitory interneurons must be modulated simul-
taneously during the motion stimulus period to enable categorical decision-making.
Gain modulation thus gates the appropriate neural population such that a correct
decision is made.Such modulation can also replicate the dip in firing rates previously
attributed to a shift in attention from the target to the motion stimulus (Fig. 22).

Keeping the strength of the inputs from the MT constant, that is, considering
µ0 = 26Hz, we shall search for the ratios of excitatory and inhibitory gains that
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Figure 21: Bifurcation diagram with cI as the parameter, keeping gE2 = 1 and µ0 = 26
Hz fixed. Dark lines represent stable branches whereas light curves represent unstable
branches.

capture experimental findings from both Reaction Time and Fixed Viewing Duration
TAFCs. Similar to previous work on LCA models [8], we shall attempt to find optimal
gain schedules for both excitatory and inhibitory populations taken together.

Similar to the analyses above, we shall explore the bifurcation diagram with µ0

as the parameter. Subsequently, we are particularly interested in the gE2 vs µ0,
cI vs µ0 and gE2 vs cI phase diagrams. The stability patterns observed on these
phase diagrams will guide our manipulations of gE2 and cI at the onset of motion
stimulus. We shall modulate these gains for the excitatory selective and inhibitory
interneuronal populations and explore the Phase-Plane as before. Crucially, we shall
attempt to ensure winner-take-all-competition is maintained, and a saddle point
exists at firing rates rL/R(tsplitting) > rL/R(ttarget), the stable symmetrical steady state
firing rate during the target period. We shall then investigate the 3 dimensional
bifurcation diagram: rL/R = f(IL,R, g) and rL/R = f(IL,R, cI) to gain a clearer
understanding of the dynamics of this model.

In future work, we shall extend the results obtained here to study the specific
dynamics of decision-making in fixed viewing duration tasks. We also seek to under-
stand how a possible waxing and waning gain influences behavioral performance by
exploring RT distributions obtained from conduting several simulations with noisy
trials. Thus far, we have contrasted steady, constant gain during motion stimu-
lus presentation with a decaying gain, with no significant differences between them
(Fig.22).

Of particular interest is how reward biases decision-making in the LIP, and
whether attention, for instance through gain modulatory mechanisms, plays a role in
such reward-based decision-making. The gating of the correct decision by fast atten-
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Figure 22: Time courses of firing rates for two selective populations when increasing both
gE2 and cI . Left: Excitatory gain gE2 = 1.49 and inhibitory gain cI = 2.30 are kept
constant. Right: Excitatory and inhibitory gains decay.

tion mediated gain modulation indicates that such mechanisms may be influential
in a task-switching paradigm, where they may enable a decision-making network to
switch to the pertinent task or stimuli.Finally, we shall extend the results obtained
here to other study other gain modulatory effects on decision making, such as those
that are context-dependent, or task-dependent [25, 26, 27, 24, 21].

47



10 Conclusion

Although previous research in behavioral economics has delineated the criteria for
optimal decision-making, such research has focused more on optimal outcomes than
on the neural mechanisms underlying decision-making. We are interested more in
the dynamics of the decision process and its possible implementations in the neu-
ral circuitry. Recent studies in neuroscience have made progress in identifying the
neural systems associated with such processes [5, 22, 29], particularly for percep-
tual decision-making tasks. Specifically, we explored perceptual decision in Two-
Alternative Forced-Choice (TAFC) tasks where a subject must choose one of two
alternatives on each trial. Electrophysiological recordings in the Middle Temporal
(MT) and Lateral Intraparietal etal (LIP) cortices of awake, behaving primates per-
forming a dot-motion discrimination task have revealed qualitatively distinguishable
firing rate patterns of neurons in the two areas. Whereas firing-rates for MT neu-
rons are noisy and depend only on the coherence, those for the LIP neurons exhibit a
ramping up to a decision threshold for neurons selective for the appropriate direction
of motion, accompanied by a simultaneous ramping down for neurons selective for
the opposite direction of motion. The mathematical models we explored sought to
account for these electrophysiological findings while positing mechanisms underlying
decision-making that can be experimentally evaluated.

We employed an abstract, Leaky Competing Accumulator (LCA) model [32, 8],
studying the effects of non-linearities, relative magnitudes of the parameters and co-
herence on the decision rendered. In particular, we considered the LCA to be Leak
dependent, Balanced or Inhibition dependent. Performing a phase-plane analysis to
find the fixed points of our system, we deduced closed form expressions for fixed
points in terms of the coherence. Our deductions suggest that not only does the
coherence determine how fast neural firing-rates ramp up or ramp down, but in ad-
dition, whether winner-take-all decision-making resulting in a categorical choice is
possible. We derived that coherence also determine the number of fixed points possi-
ble and the stabitlity of each of those fixed points. For each of the LCAs considered,
we derived a set of continuous coherence regimes, each predicting quantitatively dif-
ferent behaviors on the phase-plane. We showed that stable fixed points in Quadrant
II and IV enable winner-take-all decision-making, as do saddle points. Specifically,
the presence of a saddle enables rapid divergence of the trajectories for the two de-
cision units used to model the two neural populations. This occurs in the case of
an Inhibition dependent LCA. Since this corresponds best to the electrophysiologi-
cal data, we posit that an inhibition dependent LCA is the most neurally plausible
among the LCA models that we considered.

In order to model the time-course of neural firing-rates more accurately, we con-
sidered a two-variable biophysically realistic model of perceptual-decision making
[39], which had previously been reduced from a network of several thousand spiking
neurons [40]. Recent research attempting to model the time-course over the duration
of an entire trial had posited that the onset of the motion stimulus after the target

48



period caused a decrease in input currents encoded for the target by LIP neurons.
An analysis of the phase-plane had revealed that this reduced input current together
with the onset of the stimulus caused the decision network to switch from a stable
steady state to a saddle, enabling categorical choice [39]. However, considering the
fact that the target remains clearly visible on the screen for the entire duration of a
trial, it is unlikely that the input currents due to the target should decay. We offer
the attention mediated gain modulation of LIP neurons [21] as an alternative and
more neuarally plausible mechanism for perceptual decision-making.

Gain modulation refers to changing the slope of the input current-output firing
rate (transfer) function for a neuron or a population of neurons [25, 26, 27, 24, 21, 7,
8]. We performed a phase-plane analysis similar to that for the LCA models study the
behavior of the network during different epochs in a trial. Specifically, we obtained
a high symmetrical stable state when only the target was present, corresponding
to the firing-rates of both populations remaining at a high value. Increasing the
gain of only excitatory neurons selective towards the two directions of motion at the
onset of the motion stimulus, made the network attain a higher stable fixed point.
This prevented the winner-take-all dynamics that is required for a categorical choice.
Decreasing the gain permitted such dynamics, but the saddle now obtained corre-
sponded to firing-rates that were too low to be realistic. We derived that the fixed
points also depended on the gain of inhibitory interneuronal populations, which had
been incorporated into the synaptic coupling coefficients in the reduced two-variable
model. We noted that changing the gain of both excitatory and inhibitory interneu-
rons reconfigured the network such that it possessed a saddle point corresponding
to neurally realistic firing-rates. Divergence of the firing-rates took place near the
saddle, enabling winner-take-all dynamics and ensuring categorical decision-making.

Considered together, our modeling effort reflects a mathematical analysis based,
dynamical systems approach to understanding the mechanisms underlying decision-
making. Both our models constitute processes that merit basic study independent
of applications. In addition, according to our mathematical analyses, they generate
predictions that can be empirically tested.
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