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Abstract 
 

One of the most challenging tasks in visual object recognition 

is to reduce the amount of computation in feature matching. Scale 

Invariant Feature Transformation (SIFT) is a strong algorithm in 

terms of extracting accurate feature points and descriptors. 

However, each SIFT descriptors contains a 128-dimensional vector, 

which causes heavy computational burden when comparing two or 

more SIFT descriptors. There have been extensive works on solving 

the curse of dimensionality. In this study, we apply a dimension 

reduction technique named t-Distributed Stochastic Neighborhood 

Embedding (t-SNE) to generate lower dimension representations of 

SIFT descriptors. We evaluated the lower dimension descriptors in 

a matching application to examine if they maintain the power of 

distinction that belong to the original high dimensional descriptors.   
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Introduction 

 

Visual perception is the most important and informative way for human beings to obtain 

information from the surrounding environments. We use visual perceptions to recognize objects 

and faces and then convert this perceptual information to semantic information for further 

high-level processing. The interest of using computer to simulate the human perception ability 

induces extensive study on computer vision, specifically, object and facial recognition.  

In order to endow computer program with the ability of recognize an object, essential and 

quantifiable visual features of the object needed to be extracted from the visual representations 

of the object to uniquely characterize an object. Two of the most well-developed 2-dimensional 

feature extraction algorithms are SIFT (Scale Invariant Feature Transform) and SURF (Speeded 

Up Robust Features). The concept of SIFT was first introduced by David G. Lowe. The algorithm 

first detects visual features that are invariant of image scale change and illumination change and 

other noises. According to Lowe’s study, these feature points are often located on the high-

contrast region, such as object corners and edges (Lowe, 1999). Then the algorithm uses 

neighboring pixels to describe the features detected. SURF, partly inspired by the idea of scale-

invariant feature was first published by Herbert Bay in 2006. The main contribution of SURF is 

that it outperforms SIFT in terms of efficiency and robustness (Bay, 2006).  

When SIFT was first introduced, the corresponding feature matching algorithm is Best-Bin-First 

(BBF). It can index the nearest neighbors of feature points in a high-dimensional feature space 

by their probabilities, and the nearest neighbor is defined as the feature points that have 

minimum Euclidean distance from the given descriptor vector (Lowe, 1999). Machine learning is 

another approach to feature matching. In Lior Elazary and Laurent Itti’s study, the feature 

detector on scene image is guided by the prior knowledgebase constructed from computing 

Bayesian probabilities on visual features of the objects used for training. According to the paper, 

this approach is more efficient in indexing the plausible candidate lists and faster in converging 

towards an individual target than other traditional approaches such as HMAX and SIFTS (Elazary, 

L, and L Itti, 2011). However, because the grounding structure of SIFT feature matching 

algorithm is computing Euclidean distance between descriptors, and SIFT feature descriptor is 

composed of 128-dimensional vectors, searching for nearest neighbor in high dimensional space 

would cause considerable amount of computational burden for real-time application.  
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The main purpose of our study is to tackle the problem of curse of dimensionality occurs in SIFT 

feature matching. This study consists of two stages: In the first stage, we studied SIFT and SURF 

feature extraction algorithms and the properties of their feature descriptors. Based on the 

properties of SIFT feature descriptor, we designed a program to compute the “average visual 

representation” of each training objects. However, we discovered a few defects of this approach, 

which were the potential cost of in unsatisfying results of object classification. In the second 

stage, we improved the algorithm by introducing the SIFT feature ranking system, which is an 

algorithm that quantifies the power of distinguishing of individual SIFT features. Then we used a 

dimension reduction technique named t-SNE (t-Distributed Stochastic Neighborhood Embedding) 

to reduce the dimension of SIFT feature descriptors. Finally we created a simple object classifier 

program based on the feature ranking system and dimension reduction. In recognizing objects 

among four objects selected from Columbia Object Image Library (COIL), we achieved 100% 

percent of accuracy (4 trials in total).  However, its effectiveness is still subject to further 

experiment. Due to the particular nature of this report, the descriptions and results of both 

stages are incorporated. At the end of the document, an Appendix is added to show the original 

software requirement proposed at beginning of the project. 
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Stage (I) 

Overview: 

In this stage, we explored the basic properties of SIFT feature extraction strategy, and 

introduced an approach of computing “average represenatation” of an object, which can 

potentially be used in calculating the similarity between two object. However, experiments 

resulted in unsatisfying results. Possible causes is listed at the end of the this section. 

(1.1) Brief introduction to OpenCV 

This section gives a brief introduction to OpenCV, the computer vision library we used in our 

study, and the SIFT feature extractor functions provided by OpenCV. 

OpenCV 

OpenCV is a library of functions for real time computer vision (Bradski, 2008). It is free for both 

commercial and academic use, and come with C, C++, Python, and Java version running on Linux, 

Windows, Android, and Mac. The library has over 2500 optimized computer vision algorithm 

and is maintained by multiple groups worldwide. In this project, we used implementation of SIFT 

feature extraction algorithm, image displayer, and function that draws keypoints on images 

provided by OpenCV library (OpenCV Documentation, 2012).  

SIFT in OpenCV is included in OpenCV under Feature2D module. It is implemented according to 

Lowe’s work. Two functions of this implementation are used in our study:  

 SIFT::SiftFeatureDetector.detect() 

 SIFT::SiftFeatureDetector.compute() 

detect() takes an image in cv::Mat data structure and produces a list of cv::Keypoints object, 

which is the detected location of keypoints (represented as two-dimensional vector). compute() 

takes the image and keypoints as parameter, and produces a list of keypoints descriptors in 

cv::Mat datastructure. Each keypoint descriptor is a 128-dimensional vector. Thus in this report, 

the SIFT keypoint descriptor is specifically referred as such vector.  
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(1.2) A simple SIFT feature matching Experiment using brute force 

approach 

Purpose: 

In this section, we will introduce a brute feature matching strategy for SIFT features. This feature 

matching strategy is the grounding structure of the feature matching algorithms we used in this 

study.  Throughout this report, “feature matching” is specifically referring to this strategy.  

Method: 

Two sample images were obtained from OpenCV library package. The first image represents an 

object, containing no background noise. The second image contains multiple objects and scene 

including the object in the first image. SIFT feature descriptors were extracted from both images, 

and produced a set of SIFT features    for object image and    for scene image. Descriptors 

were matched using nearest neighbor algorithm. The final output of the program is a set   

containing paired keypoints.   is defined as: 

   {(     )                                   } 

, such that  

      (         (     ))        (                )    

In English, the algorithm output is defined as: For each keypoint    in   , the algorithm will find a 

keypoint    in    such that the Euclidean distance between    and    is minimum among all 

combination of    and keypoints in   . The algorithm will also find a keypoint     in    such that 

the Euclidean distance between    and     is the minimum among all combination of    and 

keypoints in    except for   . The pair    ,     will be in   if and only if the distance between    

and    is smaller than the distance between    and     multiplied by some constant factor k.  

10 trials of feature matching were performed with k values ranging from 0.1 to 1. Then we 

manually counted and recorded resulting matched keypoints (The keypoints locating on the 

target object).  

Results: 
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Object to be recognized:         Object recognition result (k = 0.6): 

                                           

Object recognition result (k = 0.8):           Object recognition result (k = 0.4): 

              

Figure 1.2.1: Scene image with SIFT feature points matched using different k value. 

 

Figure 1.2.2 Number of matched keypoints with different k values. 
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Discussion: 

By observing figure 1.2.2, we find the maximum k value to be approximately 0.7, because with k 

= 0.7, the ratio between the number of correctly matched keypoints and number of all matched 

keypoints is maximized. However, the result is limited to this particular pair of images. Hence, 

the choice of k is still subject to further experiment when this feature matching strategy is used 

on other images.   

 

(1.3) Searching for “Strong” SIFT Keypoints 

Purpose: 

Multiple pictures of one object are taken from different angles to represent all possible views of 

the object. In order to further analyze the distribution of the feature points in these images, we 

need to find the feature points that are robust against change of views. In other words, we want 

to find the SIFT keypoints that appear in multiples views of the object. We call such keypoints 

strong SIFT keypoints. 

Method: 

We use three different objects in our experiment: A silver-colored battery, a yellow-colored 

battery, and a green-colored glue stick. The two batteries have the exact same contour but 

different patterns and colors. 12 pictures are taken for each of the three objects to represent 

different views.  
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Yellow battery    Silver Battery                    Green gluestick 

SIFT feature keypoints and descriptors are extracted from these images using OpenCV’s SIFT 

feature detector. Then for each object, an image is chosen to be the normal view, whose SIFT 

keypoints will be compared against the SIFT feature points of other views of this object. For 

each keypoints in the normal view, we want to find a similar keypoint in each of other views. To 

find all the keypoints that is similar to the jth keypoint in the normal view, SIFT feature matching 

algorithm was ran between jth keypoints and all keypoints found in images other than the 

normal view (with different k values).  A keypoint in the normal view is considered to be a strong 

keypoint if the ratio between the number of similar keypoints found in other views and the total 

number of views is greater than a constant  . 

To observe the influence of   and   values on the number of strong SIFT keypoints, we ran the 

program that finds the number of strong SIFT keypoints with parameter   ranging from 0.1 to 

8.0 with a increment step 0.1, and parameter   ranging from 0.1 to 1 with a increment step 0.1. 

The same experiment is conducted on each of the three objects. 

Results: 

 

Figure 1.3.1 Number of strong SIFT keypoints found with different r and k values in the images of green-colored glue 

stick. 
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Figure 1.3.2 Number of strong SIFT keypoints found with different r and k values in the images of silver-colored 

battery.  

 

Figure 1.3.3 Number of strong SIFT keypoints found with different r and k values in the images of yellow-colored 

battery.  
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Discussion: 

By observing Figure 1.3.1, Figure 1.3.2, and Figure 1.3.3, we found that the number of strong 

SIFT keypoints decreases drastically as the k value, which represents the minimum quality of the 

strong SIFT keypoints, reduce from 7 to 3.  

r value, which represents the minimum generality of the Strong SIFT keypoints, only has very 

small effects on the number of strong SIFT keypoints when increasing from 0.0 to 0.7. However, 

in figure 1.3.2 and 1.3.3, we found that at k = 6, there is a sharp decrease in number of strong 

SIFT keypoints as the r value increase from 0.7 to 1.0 , which may indicate that certain views of 

battery does not have the features that appears in most of the views of the battery. For example, 

from the pictures presented below, we can see that view 10 does not have the metal convex 

part that appears in other views (view 1, 2, 3, and other views that are not presented). 

          

View 10                            View 1          View 2             View 3 

From this observation, we can conclude that to find the SIFT features that are robust against 

variation of views, the program needs to use highest possible r value while keeping adequate 

amount of strong SIFT keypoints produced. 

 (1.4) Compare Average Models 

Purpose: 

With the strong SIFT keypoints that obtained in the previous experiment, we can compute an 

average model for each of the three objects. By visual observation and exercising human 

intuition, we can safely claim that the similarity between the two batteries is higher than the 

similarity between a battery and the glue stick. Since short Euclidean distance means similar 

SIFT descriptor, it is hypothesized that if we perform feature matching between the average 

model of the two batteries and between a battery and the glue stick, the average Euclidean 

distance between the matched keypoints of two batteries would be significantly shorter than 

the average Euclidean distance between the matched keypoints of a battery and the glue stick. 
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Method: 

In this experiment, we used the strong SIFT keypoints obtained in the last experiment. The 

average model of an object consists a set of averaged strong SIFT descriptors. An average strong 

SIFT descriptor was computed by summing up its similar descriptors found in different views 

using vector summation operation and dividing the sum by the number of views that the similar 

descriptors appears. This calculation can be expressed as: 

     
 

 
∑   

 

   

 

, where n is the number of keypoints similar to the yth descriptor of xth image found in other 

views, and SDi being the ith keypoint that is similar to the subject keypoint. Both SD and Dx,y are 

128-dimension vectors.    

After computing the average models for all three objects, feature matching by calculating 

minimum Euclidean distance was performed between two batteries and between silver battery 

and glue stick. The setup of feature matching algorithm is similar to the previous experiment. 

Different   and   values were used in the experiment.  

Results: 

k r 

B&B(average 

distance) 

B&G(average 

distance) 

Error 

Ratio Difference 

4 0.7 1708 2438 0.299426 730 

5 0.7 1601 1843 0.131308 242 

6 0.7 1480 1676 0.116945 196 

7 0.7 1470 1739 0.154687 269 

5 0.8 1634 1816 0.10022 182 

6 0.8 1443 1651 0.125984 208 

7 0.8 1463 1737 0.157743 274 

8 0.8 1469 1729 0.150376 260 

6 0.9 1532 1647 0.069824 115 

7 0.9 1340 1719 0.220477 379 

8 0.9 1431 1753 0.183685 322 
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Table 1.4.1 Results of comparing the average models of two battery and average models of silver battery and glue 

stick. 

Discussion: 

By observing table 1.4.1, we can easily find a consistent and relative significant difference (about 

20%) between the average distance between the average model of two batteries and the 

average distance between the average model of the silver battery and the glue stick, which 

confirms our hypothesis. However, we cannot conclude that this is an effect way of comparing 

the object represented by SIFT features due to limited amount of training objects.  

(1.5) Compute Probability Density Function and Confusion Probabilities 

Purpose: 

After the successful experiment of comparing average models, an experiment was then 

conducted to test if the average model can be used to compute the confusion probabilities 

(Bhattacharyya Distance) among a set of objects using the equation introduced in the last 

update.  

Method: 

The Bhattacharyya Distance is used to quantify the similarity between two discrete probability 

distributions (Bhattacharyya, 1943). Greater value of Bhattacharyya Distance indicates small 

overlap between two distributions, or in our case, less confusion between measurements of two 

objects.   

    

Assuming the normal distribution of SIFT feature descriptors within a set of training object, the 

confusion probability between the probability density function of object i and of object j can be 

expressed as:  

    √
     

  
    

   
 

(     )
 

 (  
    

 )
 

C is a number range in 0 and 1.    can be seen as the variance of the Euclidean distance of SIFT 

feature to its “average model,” thus can be computed by the equation  
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   √
 

 
∑                 (          

)
 

 

   

 

, where   is the total number of descriptors of object  ,      is the descriptor of  th strong SIFT 

keypoint of object  , and       is the  th descriptor of average model of object  .        can be 

expressed as the Euclidean distance between the average model of object   and object  .  

In the experiment, confusion probability is computed between two batteries and between silver 

battery and glue stick. It is hypothesized that the confusion probability is higher for two 

batteries than for silver battery and glue stick. 

Results: 

Confusion probability between Confusion probability 
silver battery yellow battery 0.945521 
silver Battery green glue stick 0.918075 
green glue stick yellow battery 0.943517 
Table 1.5.1: results of computing confusion probabilities between two pairs of objects.  

Discussion: 

The results (Table 1.5.1) suggest that the confusion probabilities between a pair of visually 

similar objects are not sufficiently greater than the confusion probabilities between a pair of 

visually distinctive objects.  

After further experiments and analysis, we have found some possible causes of the unsatisfying 

results: 

1. The arithmetic mean of a set of descriptors might have significantly less power of 

distinction than individual descriptors because the power of distinction of a SIFT 

descriptor is essentially endowed by the unique combination of 128 float numbers. 

2. In computing “strong” SIFT keypoints, a training image was arbitrarily chosen to be the 

reference image, and all the “strong” SIFT keypoints were selected from the keypoints 

of the reference image. Consequently, the “strong” SIFT keypoints existed in other 

images were highly likely to be ignored. 

3. In the method, there are two constant values that can be adjusted to control the quality 

of the “strong” SIFT keypoints: one is the ratio between the minimum Euclidean 

distance and the second minimum Euclidean distance when matching two descriptors, 
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and the other is the ratio between the number of similar keypoints found in other 

images and the total number of images. In the experiment, adjusting these two 

numbers yielded drastic change of confusion probabilities, and we have no way to 

determine the optimized combination of these two factors.  
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Stage (2) 

Overview 

In Stage (1), we explored the approach of computing “average representations” of objects in 

order to quantify the similarity between objects pairwise. However, the experiments yielded 

unsatisfying results and we have found some potential causes of the problem. In Stage (2), we 

took another approach of computing strong SIFT keypoints, and we mainly focused on solving 

the problem of reducing dimensionality of SIFT descriptors.  We devised a method of computing 

strong SIFT keypoints using SIFT feature ranking system, and reduced the dimensionality of SIFT 

feature descriptors using a dimension reduction technique called t-SNE. At the end of this 

section, we presented the results of recognizing object using an object classifier, which is 

designed basing on dimension reduction technique and SIFT feature ranking system. 

(2.1) SIFT keypoints ranking system 

Purpose: 

To cope with the defects discovered in Stage (I), we devised a new approach to find strong SIFT 

keypoints based on multiple training images. The main strategy is to assigning a score to each 

individual SIFT keypoints. Two factors would affect the score of a keypoint: the Euclidean 

distances between the descriptor to the similar descriptors in other training images, and the 

number of similar SIFT keypoints found in total. Higher score yields greater power of 

distinguishing.  

Method: 

An experiment was conducted to test the effectiveness of this keypoints scoring system. 

The experiment uses total of 26 different views of two similar batteries as training images. Score 

is assigned to each (qualified) keypoints detected by the OpenCV SIFT detector. The score is 

computed as: 

         
(                      )

 
 

∑                              
 
   

 

, where   is the index of the training image,   is the index of the descriptor,   is the total number 

of training images,   is determined by the descriptor matching algorithm. Thus this equation 

shows that the score of  th keypoint in  th image is equal to the square of number of similar 
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keypoints found in other images divided by the sum of Euclidean distance from the  th keypoint 

in  th image to its similar keypoints.  

Then all the scored keypoints are added into a list and sorted based on their score (highest 

scores first). Then the keypoints that are among the top 20% are drawn on the original image (in 

greyscale).  

 

Results: 

 

Figure 2.1.1: Some views in which battery terminals are visible. The yellow circle indicates a unique feature which is a 

line. 

 

Figure 2.1.2: Some views in which battery terminals are not visible 

Discussion: 

From figure 2.1.1 we can see that in the views in which battery terminals are visible, a significant 

portion of the highly ranked keypoints is located on the terminals, which means terminal is a 

very distinctive feature of this battery.  There are also some keypoints located on the stripe in 

the area circled with yellow, which suggests that the stripe is also a unique feature of this 

battery. 

From figure 2.1.2, we can see that in the views in which battery terminals are not visible, there 

are less highly ranked points present than the views in figure 2.1.1. We can tell the most 
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distinctive feature of the battery present in this view is the oval shape located on the black part 

of the body because in each view, there is at least one highly ranked feature point located on 

the oval. 

Advantage of this approach over the “average model” approach introduced in Stage (I): 

1. No arithmetic computation is performed directly to the components of descriptors. Thus 

the power of distinction can be preserved in average models. 

2. No arbitrary reference images are used. Instead, all the keypoints are evaluated 

individually with the exact same process.  

3. Only one factor is used, which is the ratio between the minimum Euclidean distance and 

the second minimum Euclidean distance when performing descriptor matching. This 

factor is used to set a minimum quality threshold for keypoints. 

4. Instead of manually determined “strong” SIFT keypoints, each individual keypoints has 

its own score and its influence over the average model is determined by the score.  

 

(2.2) Reduce dimensionality of SIFT feature descriptors using t-SNE 

Purpose: 

The keypoint descriptor of a SIFT feature point is computed by dividing the surrounding region 

of the keypoint to 4x4 boxes, and assigning an 8-bins histogram to each box. Based on the total 

of 16 orientation histograms, a SIFT keypoint descriptor is represented as a 128 dimensional 

vector. 128 dimensional vectors are difficult to visualize, and would result in heavy 

computational burden when computing Euclidean distance. Therefore, in this part of the 

project, we utilized a dimension-reduction technique named t-SNE (t-Distribution Stochastic 

Neighborhood Embedding) invented by L. Maaten and G. Hinton to reduce the dimensionality of 

SIFT keypoint descriptor. t-SNE aims to find lower dimensional representations of high 

dimensional data that best preserve the relative Euclidean distance from each data point to the 

rest of dataset.  t-SNE has been proved to having superior performance over other dimension 

reduction techniques such as Isomap, LLE, and Sammon mapping in visualizing image datasets 

such as Olivetti faces library and COIL-20 object library (L. Maaten and G. Hinton, 2592). In this 
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part of the project, we want to examine if t-SNE can reduce the dimensionality of SIFT keypoints 

without losing their power of distinguishing.  

Method: 

In this experiment, we used the COIL-20 object image library to prevent background noise. We 

chose four visually distinctive objects from the image library, and name them “duck”, “shape1,” 

“shape2,” and “car” (Figure 2.2.1). Each object has 71 images that represent different views of 

the object.  

    

Figure 2.2.1: Sample images of the objects selected for the t-SNE experiment (duck, shape1, shape2, toy car). 

Then we used the SIFT keypoints ranking system introduced in the previous section to extract 

and rank SIFT keypoints. For each object, 100 keypoints that scored the highest among all 

extracted keypoints were selected to represent the object. In addition to the 100 keypoints from 

each object, we selected 15 keypoints that has relatively short Euclidean distance to each other. 

It was hypothesized that if t-SNE can preserve relative Euclidean distance among SIFT keypoints, 

the lower dimensional representation of these keypoints should form a cluster on the map. 

After the keypoints were chosen, we used t-SNE to reduce the dimensionality of the selected 

descriptors to 2, and plotted the resulting data points on a 2-dimensional map.   
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Results: 

 

Figure 2.2.2 results of reducing SIFT descriptors to 2-dimensional data points using t-SNE. 

Discussion: 

From the 2-dimensional map (Figure 2.2.2), we observed that the majority of the data points 

belong to certain clustering groups. This confirmed the effectiveness of this dimension reduction 

technique because according to the mechanism of our SIFT keypoint ranking system, keypoints 

that have many similar keypoints in other views tend to score higher than the keypoints that 

exist only in certain views; consequently, a selected keypoint should have multiple similar 

keypoints in the selected keypoints set. Therefore, a data point cluster in Figure 2.2.2 is highly 

likely to be formed by a group of similar keypoints.  Since keypoint similarity is defined by short 

Euclidean distance, this observation proved that t-SNE did preserve the relative Euclidean 

distance between keypoints in lower dimension representation. This finding was also confirmed 

by the relative tight cluster formed by the deliberately selected 15 keypoints that were 

hypothesized to be located close to each other on a lower dimension map (purple circles in 

Figure 2.2.2).  
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(2.3) A simple object classifier 

Purpose: 

In the previous part of the study, we confirmed the effectiveness of t-SNE in reducing 

dimensionality of SIFT keypoint descriptor while preserving the relative Euclidean distance 

among SIFT keypoints. Based on this finding, we want to create an object classifier using lower 

dimensional representation of SIFT keypoints.  

Method: 

We selected the same set of objects as the previous experiment to be the training objects 

(Figure 2.2.1). First, we randomly chose number of (<10) images from image library of one 

object, and use these images to represent the object to be recognized. Then we used SIFT 

keypoint ranking system to obtain 25 sample keypoints that scored the highest from these 

images. After sample keypoints were obtained, 100 strong SIFT keypoints were extracted from 

each object using the same procedure as described in the previous section, except that the 

images used as sample images are excluded from being training images.  Then we combined 

these keypoints to be a keypoints set and used t-SNE to generate a 2-dimensional 

representation of these keypoints. The classification procedure was to find the nearest neighbor 

of each sample keypoint in the lower dimension map. Each sample keypoint would vote for the 

object that contains its nearest neighbor keypoint.  The object that got highest vote would be 

selected to be the final decision. 

In this experiment, we want the program to recognize some images belong to object “duck,” so 

we chose the following images as the program input: 

 

These images were first transformed to SIFT features and ranked using SIFT feature ranking 

system. We chose 25 descriptors that has highest scores to be the representation of this object.  
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Results: 

 

Figure 2.3.1: 2-dimensional representation of identifying object “duck” from total of four training objects.  

Object name: Duck Shape1 Shape2 Toy car 

Number of votes: 13 5 3 3 

Table 2.3.1: Results of identifying some images belong to object “duck”. 

Discussion: 

The results showed an object recognition demo that results in correct decision (Table 2.3.1). 

Because this is the only experiment we performed on the classifier so far, apparently more 

extensive tests are needed in order to confirm the effectiveness of this classifier. Yet we have 

identified some potential problems of this classification approach. The first problem was the 

input that represents the object to be identified consists of keypoints from multiple images, but 

most of the existing visual object recognition program use single image as input. The reason for 

using only strong keypoints as input was that the training dataset only contains the strong SIFT 

keypoint; if we use single image as input and most of the keypoints extracted from that image 

are not strong SIFT keypoints, the program is likely to produce incorrect identification results. 

The second problem was that the t-SNE procedure needs to be executed every time the main 

program accepts a new input, which would cost huge amount of computation that is 

unaffordable for real-time object recognition system. Some possible improvements will be 

addressed in the next section. 
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Summary and Possible Future Works 

We have achieved the following goals: 

- Comprehended the concept of visual feature and studied properties of SIFT feature 

extraction strategy. 

- Designed the SIFT-keypoint ranking system, which can rank SIFT features by their power 

of distinguishing. 

- Managed to reduce dimensionality of SIFT keypoint descriptors using t-SNE. 

- Created a simple object recognition program and tested the program with ideal images. 

In Stage (1), two problems are identified: restriction of multiple image input and heavy 

computational burden. There are two possible solutions to the first problem. The first solution is 

to have the existing system taking single image as input. Then we would conduct substantial 

amount of experiments to draw the conclusion if it can produce correct results. The second 

solution is to incorporate all keypoints, regardless of their ranking, as training data, and use 

single image as input. In voting procedure, instead of each sample keypoints having equal 

amount of votes, their votes would be weighed by the ranking scores of their nearest neighbor: 

higher scores would results in greater effect in the final classification decision, and vice versa. 

However, this solution is guaranteed to cause heavy computational burden, which raises our 

second problem. There is no obvious solution to the second problem so far, we might need to 

further investigate the mechanism behind t-SNE. In addition to solving these two problems, we 

will test this system in larger object sets and even with real world object images.   
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Appendix 

Functional Requirements: 

Object Identification: 

Result representation: 

The program shall be able to produce a list of candidate locations represented as two-

dimensional Cartesian coordinates with respect to the scene image frame. The size of area that 

the object may occupy shall be represented by width and height of a rectangular shape with the 

corresponding location coordinates being its geometric central point. The candidate locations 

must be sorted by the possibilities of the object presenting at that location.  

Identification decision making: 

User shall be able to specify a convergence rate with which the program can produce a 

Boolean decision: object identification succeeded/failed. 

Program Input: 

The program shall allow at least two types of input for the visual representation of object to be 

recognized: images in file system and video frames from digital camera 

Images: The program should accept most of widely used image format. Specifically, it 

should be able to process: windows bitmaps (bmp), portable image format (pbm, pgm, 

ppm), and Sun raster (sr, ras), and other image formats such as JPEG, JPEG 2000, PNG, 

and TIFF.  

Video frames: the program shall allow users to specify a rectangular area by cursor in a 

lively playing video streaming from camera. The image of selected rectangular area 

should be able to be saved upon user request.  

The program shall allow at least two types of input for the visual representation of the scene: 

image files in file system and video frames from digital camera 

Images: (same as the object image) 

Video frames: the program must be able to query image frames from a digital camera in 

real time and use the image frames as the visual representation of the scene. 

(Requirements about camera to be specified in the non-functional requirement section) 
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User shall be able to select input sources for both object and scene through a menu which 

should be brought up upon program starts.  

Program Output: 

Object identification in a scene image: 

As stated in the previous section, object identification results are represented as lists of 

candidate locations.   When given a scene image as input, the program should produce an image 

of given format that has the object location drawn as points/rectangular shapes.  Other 

candidate locations shall be printed in console ranked by their possibilities. 

Real-time object tracking: 

Result of real-time object tracking shall be represented as a rectangular shape drawn on 

each single frame of the output video to show the approximate size and location of the object 

being tracked. Lower output video refresh rate is allowed when using high-resolution camera to 

perform object recognition. 

Non-functional Requirements: 

Object recognition 

Time efficiency 

Keypoints and descriptors extraction: As stated in the introduction section, program shall use 

feature extraction functions provided by SIFT and SURF classes in OpenCV. Modifications on 

these functions in improving time efficiency are encouraged but not required.  

Space Efficiency 

The majority of program’s space usage should depend on the size and amount of 

images/video frames used for training the program.  

Development/Usage platform 

Development environment 

To guarantee the expandability of the program in case of further development, the program 

shall be implemented in C++ and/or python in order to support most of standard OpenCV 2.0 

functions. 
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Camera interface 

The program shall use the OpenCV digital camera interface in order to support most of the 

standard cameras that feeds images in real-time via USB.  

Operating systems 

 The program must be able to function normally on both Unix-based operating system 

and Windows operating system that installed with OpenCV 2.0 or newer. The source code of the 

program shall be able to be compiled by any standard C++ compiler on any Unix-based or 

Windows operating system installed with OpenCV 2.0 or newer  

Patent/non-free 

 SIFT and SURF are protected by patent, thus the program is prohibited from commercial 

use. 

 

 


