
Appendix A

Context free languages
and push down automata

This document is an appendix to the book What Can Be Computed?:
A Practical Guide to the Theory of Computation by John MacCormick
(Princeton University Press, 2018).

Previously, we have seen two distinct computational models: Turing
machines (chapter 5), and finite automata (chapter 9). These two models
represent two extremes in the world of computability. On the one hand,
Turing machines are as powerful as any physically-realistic computer. On
the other hand, the finite automaton seems to be the weakest computational
model that deserves serious study: it can decide regular languages but
nothing else, making it strictly weaker than the Turing machine. Are there
any interesting models between these two extremes? The answer is “yes, but
not many.” Surprisingly, there are only a few useful models of intermediate
power. Of these, the most important are the push down automata (pdas),
which are the main topic of this chapter.

To understand pdas, we must first understand one of the most funda-
mental data structures in computer science: the stack. As you probably
know, a stack is a data structure that allows you to store as many pieces of
information as you want, but the only way to access the information is to
look at, and optionally remove, the top of the stack. It might help to think
of having a large supply of blank cards in a desk drawer and a desktop
where you can store a single pile (i.e. stack) of cards that have symbols
written on them. There are two operations you can perform on this pile:

Push You can take a blank card from the drawer, write a symbol s on the

1

2 Appendix A. What Can Be Computed?

card, and place it on top of the pile. We say you have pushed the
symbol s onto the stack.

Pop Provided the stack isn’t empty, you can pick up the top card from the
pile, look at the symbol s, then throw the card in the trash. We say
you have popped the stack, obtaining the symbol s.

Recall that a finite automaton is a specialized, restricted form of Turing
machine: it can’t edit the tape, and its read-write head always moves to the
right. A pda is also a restricted form of Turing machine, although it’s not
usually described like that. Usually, a pda is described as a finite automaton
augmented with a stack. Perhaps a sensible name for these things would
be “stack automata.” Why are they instead called “push down automata”?
This comes from a commonly-used physical analogy for stacks. Sometimes
we think of a stack as being spring-loaded, so that every time we add a new
item to the top, everything gets “pushed down” and the top of the stack
stays at the same level. Some cafeterias use a system like this with stacks
of dining plates.

Pdas come in two flavors: we have the deterministic pda (dpda) and the
nondeterministic pda (npda). Surprisingly, and very importantly, dpdas
and npdas are not equivalent in terms of computational power. This will
be one of the main results of the chapter, demonstrating that (in contrast
with dfas/nfas, and dtms/ntms) nondeterminism can affect computability.
We won’t give a proof of the non-equivalence of dpdas and npdas, but we
will see a persuasive example at the end of section A.1.

The other key result of the chapter is that pdas correspond to a funda-
mental and important class of languages known as context free languages
(cfls). Cfls are a central concept in the theory of compilers and program-
ming languages. It turns out that an understanding of pdas is very useful
for building practical compilers. The proof of equivalence for pdas and cfls
is given in sections A.3 and A.5.

A.1 Definition and examples of pdas

We mentioned above that a pda can be thought of as a finite automaton
augmented with a stack. Our formal definition, however, is based on Turing
machines:

Pda, dpda, and npda. A pda is a 2-tape Turing machine with
the additional properties (1)–(4) below. If the Turing machine
is deterministic, we have a deterministic pda or dpda. If the
Turing machine is nondeterministic, we can emphasize this by

Appendix A. What Can Be Computed? 3

calling it an npda, but the term “pda” incorporates both npdas
and dpdas. The two tapes of a pda have special names: the first
tape is called the input, and the second tape is called the stack.
The input has the same restrictions as a finite automaton with
ε-transitions:

(1) Cells on the input tape cannot be altered.

(2) The head for the input tape always stays or moves to the
right (it cannot move left).

The stack tape is restricted to push and pop operations, formal-
ized as follows:

(3) The stack is initially empty (i.e. the stack tape contains
only blank symbols).

(4) The only permitted sequences of operations on the stack
tape are:

� (Push) Write a non-blank symbol s, then move right
one cell.

� (Pop) Move left one cell, read symbol s, then overwrite
s with a blank and stay at the current cell.1

Naturally, the input to a pda is provided at the start of the input tape before
the computation begins. By definition, this input consists of a sequence of
non-blank symbols followed by infinitely many blanks.

The easiest way to describe a specific pda is via a transition diagram,
such as figure A.1. The details of this figure will be explained shortly.
First, let’s understand the specialized notation on these transition dia-
grams, which is somewhat different to the finite automaton and Turing
machine notation from earlier chapters. Specifically, each transition is la-
beled

X, s; s1

where X is the scanned input tape symbol, s is the popped stack symbol,
and s1 is the symbol (or symbols, as described soon) pushed back onto the
stack. For example, the transition label

C,g;a means “if the scanned input symbol is C and the
popped stack symbol is a g, push an a onto
the stack and move right to the next input
symbol.”

1Attempting to pop an empty stack is equivalent to doing nothing. In terms of the
underlying Turing machine operations, this corresponds to our convention that com-
manding a Turing machine to move left from cell 0 leaves the head where it is.

4 Appendix A. What Can Be Computed?

Figure A.1: A pda solving the problem ContainsNANA.

Any or all of the three components can be replaced with ε, as the following
examples show:

ε,g;a means “if popped g, then push a, and don’t move
input head”

C, ε;a means “if scanned C, then push a without popping
anything, and move input head right”

C,g; ε means “if scanned C and popped g, move input head
right”

C, ε; ε means “if scanned C, move input head right without
altering the stack”

Figure A.1 provides a concrete example. This pda solves the problem
ContainsNANA, which searches a string for one of the substrings “CACA”,
“GAGA”, “TATA”, or “AAAA” (for details, see figure 8.1). As with the tran-
sition diagrams in earlier chapters (see section 5.1), we allow abbreviated
notation, so “! ” matches any single symbol other than a blank.

Hence, our containsNANA pda is nondeterministic. When reading a
C, G, A, or T, the state q0 produces two clones: one returns to q0, and the
other advances to q1. Note how the stack is used to remember the first
character of the string to be matched. For example, whenever the pda
encounters a G, one of the clones pushes “g” onto the stack and transitions
to q1. If the next input symbol is an A, the pda moves to q2. At this point,
the clone rejects unless the top stack symbol matches the scanned input
symbol. In our specific example, then, the pda transitions to q3 only if the
next input symbol is a G.

The containsNANA pda illustrates a useful convention: it often im-
proves readability to use a separate input alphabet and stack alphabet. In
this book, we will typically use uppercase letters for the input and lower-
case letters for the stack. This is not formally required by the definition
of a pda, but it does make it easier to read transitions like “C,g; ε.” The

Appendix A. What Can Be Computed? 5

Figure A.2: Top: The pda GnTn, which decides the language GnTn. Bot-
tom: The pda GnT2n, which decides the language GnT2n. The only differ-
ence between these pdas is in the q1 Ñ q1 transition.

alphabet for the underlying Turing machine is just the union of the input
and stack alphabets.

The book materials provide the simulators simulateDpda.py and
simulateNpda.py for deterministic and nondeterministic pdas respec-
tively. The format for describing pdas in ASCII is similar to the Turing
machine descriptions in chapter 5 and the finite automata descriptions in
chapter 9. ASCII descriptions of all pdas in this chapter are provided
with the book materials; see containsGAGA.pda containsNANA.pda
for specific examples. The simulators can be invoked using the same style
of commands as for Turing machines and finite automata:

>>> simulateDpda(rf('containsGAGA.pda'), 'TTGAGATT')
>>> simulateNpda(rf('containsNANA.pda'), 'TTGAGATT')

Note that our containsNANA pda decides a language that can also be
decided by an nfa (or dfa). The nfa would need more states: instead of
a single q1, for example, we would need four separate states to remember
which character needs to be matched. So in this case, the presence of the
stack yields a more compact automaton but doesn’t appear to provide extra
computational power.

6 Appendix A. What Can Be Computed?

In contrast, our next two pda examples demonstrate that pdas are
strictly more powerful than dfas and nfas. The top panel of figure A.2
shows a pda called GnTn that decides the language GnTn. In section 9.5,
we proved that this language cannot be decided by any dfa or nfa. Hence,
this example provides an immediate proof that pdas are more powerful than
dfas.

Let’s investigate the GnTn pda in more detail. Its first action, in the
q0 Ñ q1 transition, is to push the symbol “z” onto the stack without
reading any input. This is a trick that our pdas will use frequently: there is
no built-in way of recognizing the bottom of the stack, but we can achieve
this by pushing a unique symbol onto the stack before doing anything else.
In this book, we will always use “z” to mark the bottom of the stack, but
of course any other symbol could be used for that purpose.

After this, the GnTn pda loops in q1, pushing one “g” for every “G”
encountered in the input. As soon as a “T” is encountered, it pops a “g”
and switches to q2, where it continues to pop one “g” for every “T”. The
automaton accepts if and only if the blank marking the end of the input is
encountered at the same time that the bottom of the stack (“z”) is popped.
This means the number of g’s pushed equals number of g’s popped, so the
number of G’s equals the number of T’s. The lower curved transition enables
the special case of the empty string being accepted. Thus, the pda accepts
precisely the strings of the form GnTn for n ¥ 0.

The lower panel of figure A.2 shows a slight variant. The only difference
is the q1 Ñ q1 transition, which pushes two g’s instead of one. The notation
for this transition, “G, ε;gg”, demonstrates another useful convention for
our transition diagrams: we allow a single transition to push two or more
symbols onto the stack, if desired. This is just a notational convenience,
since we could have written out a sequence of states that push one symbol
at a time instead. The order of the pushes runs right to left. For example:

C,g;abc means “if the scanned input symbol is C and the
popped stack symbol is a g, push a c, then
a b, then an a onto the stack, and move right
to the next input symbol.”

Returning to the lower panel of figure A.2, let’s determine what language
it decides. The input must begin with some G’s, say n of them. For each
of these G’s, two g’s get pushed. So, immediately before the first T is
encountered, there are 2n g-symbols on the stack. For the remainder of the
input, one g is popped for every T. Thus, the PDA accepts precisely strings
of the form GnT2n for n ¥ 0. Although we didn’t explicitly prove it in
chapter 9, it’s easy to see that this language is also irregular and therefore

Appendix A. What Can Be Computed? 7

another example of the extra power of pdas. The next claim summarizes
these observations.

Claim A.1 There exist non-regular languages that can be decided by
dpas. Hence, dpdas are strictly more powerful than dfas or nfas.

Proof of the claim. To prove the claim, we need only a single example
of a non-regular language that is decidable by a dpda. The GnTn example
discussed above is a suitable example. l

The GnTn example shows us how we can use a pda’s stack to count
things. In the next example, we use it for a more detailed comparison.
For this, we need some new notation. Given a string s, write sR for the
reverse of s. For example, if s � “GAT” then sR � “TAG”. (We used a
similar notation to reverse an entire language in section 9.7; now we use
it to reverse individual strings.) Recall that a palindrome is a string that
reads the same backwards as forwards. More formally, s is a palindrome
if s � sR. For example, the following are all palindromes: ε, “G”, “GG”,
“CTC”, and “GTTATTG”. We use this idea to define two new languages that
form palindromes from “A” and “T” characters:

EvenPalindromes � ts � pT |Aq� such that s � sR and |s| is evenu

MarkedPalindromes � ts � pT |Aq� C pT |Aq� such that s � sRu

So EvenPalindromes contains strings such as “ATTA” and “TTAATT”,
whereas MarkedPalindromes contains strings such as “ACA” and “TTACATT”.
The key difference is that, in MarkedPalindromes, the center of each
string is marked with a “C”. In EvenPalindromes, we can only deter-
mine the center of the string by examining the entire string. By the way,
we consider palindromes of even length purely to simplify the pda that
decides this language. It is a useful exercise to create a pda that decides
palindromes of any length.

Figure A.3 shows pdas deciding each of our palindrome languages. These
pdas use the same trick of pushing a “z” to mark the bottom of the stack.
The key observation is that state q2 pops “A” and “T” characters in pre-
cisely the reverse order that they were pushed on in state q1—by definition,
stacks release their contents in the reverse of the insertion order. This is
how we enforce the requirement that the string reads the same backwards
or forwards.

The only difference between the two pdas of figure A.3 is in the tran-
sition from q1 to q2. The top pda can follow this transition at any time
without consuming any input or stack symbol, whereas the bottom pda
insists on reading the center-marking “C” before transitioning to q2. This
apparently-small difference is deceptive: it means that the top panel’s q1 is

8 Appendix A. What Can Be Computed?

Figure A.3: Top: An npda deciding the language EvenPalindromes.
Bottom: A dpda deciding the language MarkedPalindromes. The only
difference between these pdas is in the q1 Ñ q2 transition.

nondeterministic, since any “A” or “T” in the input string offers the choice
of remaining in q1 or transitioning to q2. In effect, the top pda launches a
new clone for every “A” or “T”, just in case the scanned input symbol is the
start of the second half (that is, the reversed half) of the string. The bot-
tom pda doesn’t need this nondeterminism: because of the center-marking
“C”, it can tell exactly when it reaches the middle of the string. In fact, a
careful analysis of each transition in the bottom pda reveals that the entire
pda is deterministic.

It turns out that we have encountered a truly fundamental difference
between EvenPalindromes and MarkedPalindromes: we constructed
an npda that decides EvenPalindromes, but it can be shown that no
deterministic pda decides EvenPalindromes. This important and sur-
prising difference between npdas and dpdas is highlighted in the following
claim.

Claim A.2 There exist languages that can be decided by an npda but
not by any dpda.

The proof of this claim lies beyond the scope of this book and is omitted,
but the example of figure A.3 is persuasive. Spend a few minutes trying to
construct a dpda for EvenPalindromes! The set of languages that can
be decided by dpdas is known as the deterministic context free languages.

Appendix A. What Can Be Computed? 9

We briefly return to this concept in section A.6.
We finish our overview of the computational power of pdas by stating

another result without proof, this time demonstrating that Turing machines
have strictly greater power than pdas.

Claim A.3 There exist languages that can be decided by a Turing ma-
chine but not by any pda.

Again, a proof of this claim is beyond the scope of this book, but we
can provide a few hints about why it is true. One example of a language
that can’t be decided by pdas is tGnTnAn |n ¥ 0}, or GnTnAn for short.
Clearly, GnTnAn can be decided by a Python program and hence by a
Turing machine. But it can be shown that, because they have only a single
stack, pdas can’t keep track of both matching pairs of G’s and T’s and
matching pairs of T’s and A’s. The proof employs a more advanced variant
of the pumping lemma, known as the “pumping lemma for context free
languages.”

A.2 Context free grammars

In computer science, a “grammar” is a set of rules for producing strings.
Let’s start with an informal example:

sÑ CGaT

aÑ ε |Aa

Our grammars will always generate strings by begining with the start sym-
bol, usually denoted s. Symbols appearing on the left-hand side of a rule
(before the “Ñ”) are called variables. In this book, variables will usually
be lowercase ASCII letters; the variables in the example above are s and a.
The remaining symbols are called terminals. In this book, terminals will
usually be uppercase ASCII letters; the terminals in the example above are
C, A, G, and T. In most of our examples, we will restrict the terminals to
this genetic alphabet. In general, of course, the variables and terminals
could be drawn from any disjoint alphabets.

The rules in the example grammar above tell us we can replace “s”
with “CGaT”, and we can replace “a” with either ε or “Aa”. Rules can be
applied as many times as we wish. For example, in this grammar we can
obtain the sequence

sÑ CGaTÑ CGAaTÑ CGAAaTÑ CGAAT.

10 Appendix A. What Can Be Computed?

A sequence like this is called a derivation. Any string that can be derived
is called a sentential form. In our example, sentential forms include “s”,
“CGaT”, “CGAAaT”, and “CGAAT”. Most often, we are interested in de-
riving strings that contain no variables. We call these terminal strings, or
just strings. So, “CGAAT” is a terminal string generated by our example
grammar, whereas “CGAAaT” is a sentential form but not a terminal string.
The set of all terminal strings that can be derived by a grammar G is called
the language generated by G. It’s easy to see that the language generated
by our example grammar is represented by the regular expression CGA�T.

Grammars are an important and fundamental concept. They can be
used to unify all of theoretical computer science. For example, there exists
a class of regular grammars that generate all regular languages. Every
regular grammar G corresponds to some dfa D (and vice versa), such that
D decides the language generated by G. Similarly, there exists a class
of unrestricted grammars that generate all recognizable languages. Every
unrestricted grammar G corresponds to some Turing machine M (and vice
versa), such that M recognizes the language generated by G. This fact is
particularly important for historical reasons, since researchers such as Emil
Post developed a complete theory of computation based on unrestricted
grammars, independently of Alan Turing’s development of the theory in
terms of Turing machines.

Despite their fundamental importance, we mostly ignore grammars in
this book. Our approach is instead based on Turing machines and special
cases of Turing machines, such as dfas and pdas. However, there is one
class of grammars that we cannot ignore, since it is ubiquitous in com-
puter science. This is the class of context free grammars. Here’s a formal
definition:

Context free grammar, context free language. A con-
text free grammar (cfg) consists of: an alphabet of variables
including the start symbol, a separate and disjoint alphabet of
terminals, and a finite set of rules. Each rule maps a single
variable to a string of variables and terminals.

A language generated by a cfg is called a context free lan-
guage (cfl).

As a notational convenience, we often combine rules that map a given
variable using the vertical bar, “|”. For example, our initial example at the
start of section A.2 combined the two rules a Ñ ε and a Ñ Aa into the
more compact notation aÑ ε |Aa.

What makes a grammar “context free”? The key part of the definition
is that the left-hand side of any rule contains exactly one variable. More
general grammars allow additional constraints on the left-hand side, as in

Appendix A. What Can Be Computed? 11

the rule aGÑ ATG, which allows us to replace the variable “a” with “AT”
only when the “a” is followed by a “G”. In other words, this rule can only
be applied when the “context” of the variable includes a “G” on the right.
By insisting that the left-hand side of a rule contains only a single variable
v, we are declaring that the rule can be applied whenever v occurs in a
sentential form, regardless of v’s context.

Derivation trees and ambiguity

Let’s now focus our attention on the following cfg, which we’ll call G1:

sÑ sc |st | ε

cÑ CAT (A.1)

tÑ TAG

As a simple but valuable exercise, experiment with the G1 grammar until
you understand exactly what language it generates. After a minute or two,
it should become clear that this language is represented by the regular ex-
pression pCAT |TAGq�. But you probably found several different ways of de-
riving strings in the language. For example, consider the string “TAGCAT”.
There are in fact four different ways to derive this string, including the
following two that will be of special interest to us:

sÑ stÑ sctÑ ctÑ CATtÑ CATTAG (A.2)

sÑ stÑ sTAGÑ scTAGÑ sCATTAGÑ CATTAG (A.3)

Here we have introduced some new notation that helps us to understand
the derivations: in each sentential form, the variable that is about to be
replaced is underlined. Clearly, whenever there are two or more variables in
a sentential form, we can choose which one to replace next. If a derivation
always chooses to replace the leftmost variable in the current sentential
form, we call it a leftmost derivation. If a derivation always chooses to
replace the rightmost variable in the current sentential form, we call it a
rightmost derivation. Line (A.2) above is a leftmost derivation, and (A.3) is
a rightmost derivation. The real point of leftmost and rightmost derivations
is that they capture the underlying structure of a derivation. Although
we could continue to analyze both leftmost and rightmost, they turn out
to have similar properties. It will be simpler to focus only on leftmost
derivations.

Next we must understand derivation trees, which are an alternative way
of viewing derivations. Given a derivation, the corresponding derivation

12 Appendix A. What Can Be Computed?

Figure A.4: Derivation tree for “CATTAG” in the G1 grammar.

tree is defined recursively: the root node is the start symbol s, and the
children of any node v are the symbols produced when a rule is applied
to v. The children must of course be listed in order from left to right, as
specified by the rule that produced them. The yield of a derivation tree
is the string formed by concatenating the leaves of the tree from left to
right. Figure A.4 gives a derivation tree of “CATTAG” in the G1 grammar;
note that the yield is indeed “CATTAG”. Before reading on, trace out the
leftmost and rightmost derivations on this tree, and convince yourself of
the simple correspondence between the tree and these derivations.

It follows immediately from the definition of derivation tree that the
internal nodes are all variables and the leaf nodes are all terminals or ε.
It’s also easy to see that a given derivation tree corresponds to a unique
leftmost derivation, obtained by generating the tree in the standard left-
first, depth-first order. Thus, there is a one-to-one correspondence between
derivation trees and leftmost derivations.

Is it possible for a string to have two different leftmost derivations? (Or
equivalently, can a string have two different derivation trees?) Unfortu-
nately, the answer is yes. Consider the following cfg, denoted G2, which
adds two new rules to G1:

sÑ sc |st | ε

cÑ CAT |CA

tÑ TAG |AG

Now consider the string “CATAG”. As a simple but important exercise,
try to write down two distinct leftmost derivations and two distinct deriva-
tion trees for this string, before looking at the solutions below. Hopefully,

Appendix A. What Can Be Computed? 13

Figure A.5: Distinct derivation trees for “CATAG” in the G2 grammar..

you were able to obtain the following leftmost derivations, where the only
difference is in the fifth sentential form:

sÑ stÑ sctÑ ctÑ CATtÑ CATAG (A.4)

sÑ stÑ sctÑ ctÑ CAtÑ CATAG (A.5)

The difference is more obvious in the trees of figure A.5, where we
see immediately that the terminal “T” has a different parent in the two
derivations. This situation is called ambiguity. Formally, a terminal string
is ambiguous if it has two distinct leftmost derivations (or equivalently,
two distinct derivation trees). A cfg is ambiguous if it has one or more
ambiguous terminal strings in its language.

So, we have already proved that G2 is an ambiguous cfg, since we exhib-
ited a string with two distinct leftmost derivations. Interestingly, however,
the problem of ambiguity in G2 can be fixed. We will now describe a new
cfg, G3, which generates the same language as G2, yet is not ambiguous.
The rules of G3 are:

sÑ sc |sa |scT |sTa | ε

cÑ CA

tÑ AG

We leave it as an exercise to prove that G3 is in fact unambiguous and
generates the same language as G2.

Ambiguity in context free grammars is a subtle and fascinating topic,
but we don’t dwell on it here. Instead, we will state without proof two
important facts about ambiguity:

� There do exist inherently ambiguous cfgs: that is, cfgs that cannot
be reformulated to remove ambiguity, as we can do with G3 above.

14 Appendix A. What Can Be Computed?

sÑ sc |st | ε

cÑ CAT

tÑ TAG

Figure A.6: Left: The grammar G1, which generates the language L repre-
sented by the regex pCAT |TAGq� (see section A.2). Right: A pda equivalent
to G1. This pda recognizes the language L and is provided with the book
materials as cattag.pda. For additional explanatory details, experiment
with showCATTAGhist.py.

Consequently, there exist ambiguous context-free languages, which are
generated only by ambiguous cfgs. One example of an ambiguous cfl
is

tCnAmTk such that n � m or m � ku.

� Let AmbiguousCfg be the decision problem that asks whether a
given cfg is ambiguous. Then AmbiguousCfg is undecidable.

A.3 Converting a cfg to a pda

We now turn to the most important result of this chapter, which is that
pdas recognize precisely the set of context free languages. Note carefully
the use of the word “recognize” rather than “decide” here, and if necessary
review section 4.5 to understand the difference between these concepts. For
the remainder of this chapter, we focus only on recognizing languages and
not deciding them. The reason is that there is no easy way for grammars
to reject a string. Grammars generate strings. So we can imagine using a

Appendix A. What Can Be Computed? 15

step
number

state tape
stack
(top to the left)

0 q0: C A T ε

1 q1: C A T sz

2 q1: C A T scz

3 q1: C A T cz

4 q1: C A T CATz

5 q1: C A T ATz

6 q1: C A T Tz

7 q1: C A T z

8 qaccept: C A T ε

Figure A.7: A complete computation of the pda in figure A.6, accepting
the string “CAT”. Note that the computation tree of this pda for the input
“CAT” is infinite. The computation shown here is the only path leading
to a positive leaf in the computation tree. It corresponds to the leftmost
derivation sÑ scÑ cÑ CAT.

grammar to create a list of all the strings in a language: begin with the
start symbol, and repeatedly apply all of the possible rules in the grammar.
This approach will never terminate, but it will generate every string in the
language of the grammar. Thus, given any particular string S, we will
eventually recognize S if it is in the language. But there is no obvious way
of rejecting S if it is not in the language.2

Therefore, we aim to prove that cfgs and pdas are equivalent in the sense
that they recognize the same class of languages. To prove this result, we
will need to show that (i) given any cfg G, there exists a pda that recognizes
the language generated by G; and (ii) Given any pda M , there exists a cfg
that generates the language recognized by M . In this section, we prove
part (i).

Before giving a general proof of (i), it will be helpful to examine a
detailed example. Figure A.6 presents this example, which is based on the
grammar G1. The rules of G1 are shown again in the left panel of figure A.6.
Recall that G1 was first introduced in section A.2, where we saw that it
generates the language L represented by the regex pCAT |TAGq�. So our
challenge is to come up with a pda that recognizes any string of the form

2The question of membership in a context free language is decidable: a cubic-time
algorithm known as CYK achieves this. But CYK itself runs on a Turing machine, not
a pda.

16 Appendix A. What Can Be Computed?

pCAT |TAGq�.

One possible solution is shown in the right panel of figure A.6. This is
also provided with the book materials as cattag.pda. You can of course
simulate this pda using simulateNpda.py, as mentioned previously. But
it is also recommended to experiment with the file showCATTAGhist.py,
which demonstrates some of the facilities provided for analyzing pda com-
putations in more detail.

The basic idea of the cattag pda of figure A.6 is that it will use its stack
to mimic any left-most derivation from G1. The first transition, q0 Ñ q1,
pushes the bottom-of-stack marker z and the grammar’s start symbol s
onto the stack. The only accepting transition, q1 Ñ qaccept, will accept only
if we have finished reading the input string (and therefore have reached a
blank symbol on the tape) and the stack is empty.

At the heart of the cattag pda are the nine q1 Ñ q1 transitions. The
bottom four are easy to understand: these transitions consume a terminal
symbol on the input tape if and only if the same terminal symbol is at the
top of the stack. So we need to arrange that, for any string that is in the
language, the string’s symbols can be pushed onto the stack in the correct
order. This is accomplished by the five q1 Ñ q1 transitions shown above
q1. Each of these transitions implements one of the rules of the grammar.
There are five transitions here, because there are five rules in the grammar.
(Note that the line “sÑ sc |st | ε” represents three separate rules.) Each
rule is implemented in the pda by a transition that pops the left-hand side
of the rule from the stack, and pushes the right-hand side onto the stack.
For example, the rule cÑ CAT pops c and pushes CAT. Note that this is an
exception to a normal practice of using disjoint input and stack alphabets.
In this construction, it is convenient to use symbols from the input alphabet
on the stack.

The cattag pda incorporates non-determinism, because sometimes
there are several rules that could be applied to the top stack symbol. For
this particular grammar, the only stack symbol that permits nondetermin-
ism is the start symbol s, which generates three different clones correspond-
ing to the three possible rules whose left hand side is s.

The overall effect of this pda can be seen by allowing it to process the
input string “CAT”, as shown in figure A.7. This computation is simulated
in detail by the provided program showCATTAGhist.py; now would be
a good time to try it if you haven’t done so already. The sequence of com-
putational steps shown in figure A.7 is only one possible path through the
computation tree: step numbers 1 and 2 involve non-determinism, because
there are three possible transitions whenever s is at the top of the stack. In
this figure, only the nondeterministic choices leading to the acceptance of
the string “CAT” are shown. Notice how steps 2, 3, and 4 each correspond

Appendix A. What Can Be Computed? 17

to the application of a rule in the leftmost derivation of this string, which
is s Ñ sc Ñ c Ñ CAT. The other steps involve initialization of the stack
(step 1), acceptance of the blank symbol with an empty stack (step 8), and
consumption of terminal symbols in the input string while simultaneously
popping them off the stack (steps 5, 6, 7).

Let’s now prove that this construction can be made to work for any cfg.

Claim A.4 Let G be a cfg that generates the language L. Then there
exists a pda M that recognizes L.

Proof of the claim. We construct M as in the example of figure A.6. M
contains only the three states q0, q1, qaccept. The transitions q0 Ñ q1 and
q1 Ñ qaccept are exactly as shown in figure A.6. In addition, we have one
q1 Ñ q1 transition for each terminal symbol, following the same pattern
as the rules below q1 in figure A.6—let’s call these the terminal symbol
transitions. Formally, M has a q1 Ñ q1 transition labelled “X,X;ε” for
each terminal X in G.

Also, we have one q1 Ñ q1 transition for each rule in G, following
the same pattern as the rules above q1 in figure A.6—let’s call these the
grammar rule transitions. Formally, M has a q1 Ñ q1 transition labelled
“ε,v;W” for each rule v ÑW in G.

Now let T be a string in L. We need to show that M accepts T . Well,
we know that T has a leftmost derivation T0 Ñ T1 Ñ . . . Ñ Tn, where
T0 � s and Tn � T . Each step in this derivation can be mimicked by
following the corresponding grammar rule transition in M . If the resulting
sentential form Ti has any terminal symbols at its left end, we then consume
these symbols using the corresponding terminal symbol transitions, before
moving to the next step of the derivation. A completely formal proof of
correctness would use induction to show that the following invariant holds:
whenever M has finished applying the transitions corresponding to step i in
the derivation, M ’s stack contains precisely Ti, with any prefix of terminal
symbols removed, and this same prefix has been read on the input tape.
We leave these details as an exercise. Note that the invariant does yield an
accepting transition at the end of the derivation, since the stack must be
empty and all symbols of T have been read on the input tape.

Finally, we need to show that M does not accept strings outside L. This
follows by contradiction, using similar reasoning to the above. Specifically,
suppose that M accepts some string T R L. Then we examine the accepting
computation, and note the sequence of grammar rule transitions taken by
M in this computation. This sequence of grammar rules corresponds to a
leftmost derivation of T , contradicting the fact that T R L. l

18 Appendix A. What Can Be Computed?

A.4 Subcomputations for pdas

Before investigating the connections between pdas and cfgs any further, we
need a more detailed understanding of pdas. This section describes these
necessary details, covering the standard form of a pda, matching push-pop
transition pairs, stack-preserving subcomputations, and finally the splitting
and peeling operations on these subcomputations.

Standard form of a pda

A pda M is in standard form if

1. M can enter qaccept only when the stack is empty;

2. Every transition of M either pushes exactly one symbol onto the stack
or pops exactly one symbol off the stack.

3. The input alphabet and stack alphabet of M are disjoint, except for
the blank symbol.

4. Before accepting, M always consumes the entire input. By conven-
tion, the input is terminated with a blank symbol. Thus, any transi-
tion to qaccept is guaranteed to read the blank symbol from the input
tape while simultaneously, due to condition (2) above, popping the
last remaining symbol off the stack.

As the next claim shows, we lose nothing by assuming our pdas are in
standard form.

Claim A.5 Given a pda M , there exists an equivalent pda M 1 in standard
form.

Sketch proof of the claim. We sketch the key ideas of the proof, leaving
the formal details as an exercise. To achieve condition (1) above, we can
use the trick already mentioned in section A.1. First, choose a symbol
that is not already in the stack alphabet—in our examples, we always use
z for this. Insert a new state and transition from the initial state that
does nothing but push z onto the stack. Insert another state before any
transitions to qaccept. This state uses a self-transition to pop all non-z’s,
then when it detects a z it pops that and transitions to qaccept. This
guarantees the pda’s stack is empty when it enters qaccept, as required.

To achieve condition (2), we simply add new states and transitions wher-
ever necessary, breaking down operations that involve pushing or popping
more than one symbol into their constituent parts. For example, a transi-
tion that pops a then pushes bc would be broken down into three transi-
tions: an a-push, then a c-push, then a b-push. We also need a technique

Appendix A. What Can Be Computed? 19

stack symbol pushes pops
a q2 Ñ q3 :A,ε;a q3 Ñ q4 : ε,a;ε

g q1 Ñ q1 :G,ε;g
q1 Ñ q2 :T,g;ε
q2 Ñ q2 :T,g;ε

z q0 Ñ q1 : ε,ε;z q4 Ñ qaccept : ,z;ε

Figure A.8: Top: The pda GnTnA in standard form. Bottom: The pda’s
transitions have been organized into matching pushes and pops, according
to which stack symbol they employ. There are four matching push-pop
pairs, because the g-push matches two possible g-pops.

for dealing with transitions like “A,ε;ε”, which read a tape symbol without
touching the stack. This is converted to standard form by pushing an extra
symbol onto the stack and immediately popping it. For example, we could
convert “A,ε;ε” into “A,y;ε” followed by “ε,ε;y”.

Observe that condition (3) can be achieved very easily, by substituting
new unique symbols for any that are used in both the input and stack
alphabets.

Finally, it is also easy to guarantee condition (4), by inserting an extra
state before qaccept and allowing the new state to consume the remainder
of the input before executing the required “ ,z;ε” transition to qaccept.l

Matching push-pop transition pairs

Once we convert a pda into standard form, its accepting computations have
a very nice property: every symbol pushed onto the stack must eventually
be popped off at some time later in the computation. (This follows im-
mediately from the fact that a pda in standard form must have an empty
stack when it enters qaccept.) This motivates us to think about organizing
all of the transitions from a given pda into matching pairs that push and
pop the same symbol.

The top panel of figure A.8 provides an example of a pda in standard
form. This pda recognizes the language tGnTnA |n ¥ 1u, so we will refer to
this pda as GnTnA. The figure includes some extra labels on the transitions

20 Appendix A. What Can Be Computed?

to help with organizing them into matching push-pop pairs. Because the
pda is in standard form, we know every transition pushes or pops exactly
one symbol. So it makes sense to describe a transition as, for example, a
“g-push” or “z-pop.” In the bottom panel figure A.8, the seven transitions
of the pda have been placed into a table. The transitions are sorted accord-
ing to which stack symbol they push or pop; this determines in which row of
the table each transition is placed. The transitions are further sorted into
pushes and pops, and this determines the column for each transition. From
the table, we can quickly read off all possible matching pairs of pushes and
pops. For example, for the stack symbol a, we see there is exactly one pos-
sible matching pair in the top row: the a-push “q2 Ñ q3 :A,ε;a” matches
the a-pop “q3 Ñ q4 : ε,a;ε”. For the stack symbol g, however, there are
two possible matching pairs. The g-push “q1 Ñ q1 :G,ε;g” matches either
of the g-pops “q1 Ñ q2 :T,g;ε” or “q2 Ñ q2 :T,g;ε”.

Clearly, this is a small and simple example. In general, suppose that
for a given stack symbol x we have k1 x-pushes and k2 x-pops. Then there
would be k1k2 matching pairs of x-pushes and x-pops.

Stack-preserving subcomputations

Given a pda in standard form, an accepting computation of that pda can be
thought of as a sequence of legal configurations and transitions beginning
in q0 and ending in qaccept with an empty stack. Figure A.9(a) shows an ex-
ample of an accepting computation for GnTnA. This example demonstrates
our notation for pda computations, which includes the contents of the stack
after each transition, written below the current state. The input tape sym-
bol consumed by a transition is written above the arrow between states,
and we refer to the string of all of these symbols concatenated together
as the string consumed by the computation. For example, the accepting
computation of figure A.9(a) consumes the string “GGTTA”.

We define a subcomputation to be any sequence of legal consecutive con-
figurations and intervening transitions. Figure A.9(b) shows an example,
consisting of a sequence of four consecutive states and the intervening tran-
sitions, drawn from the accepting computation (a). As before, we define
the string consumed by the subcomputation in the obvious way, in this case
yielding “GTT”. Of course, a string consumed by a subcomputation is not
necessarily in the language recognized by the pda.

Let us now pay attention not to the input symbols consumed, but the
behavior of the stack. Notice how in this particular subcomputation, the
stack contains gz at the beginning of the subcomputation and contains
z at the end of the subcomputation. Usually, we won’t be interested in
subcomputations that alter the stack like this. Instead, we concentrate on

Appendix A. What Can Be Computed? 21

q0
ε
Ñ q1

G
Ñ q1

G
Ñ q1

T
Ñ q2

T
Ñ q2

A
Ñ q3

ε
Ñ q4 Ñ qaccept

ε z g
z

g
g
z

g
z

z a
z

z ε

(a) an accepting computation for GnTnA

q1
G
Ñ q1

T
Ñ q2

T
Ñ q2

g
z

g
g
z

g
z

z

(b) a subcomputation for GnTnA

q1
G
Ñ q1

G
Ñ q1

T
Ñ q2

T
Ñ q2

z g
z

g
g
z

g
z

z

(c) a stack-preserving subcomputation for GnTnA

Figure A.9: Examples of an accepting computation and subcomputations
for the GnTnA pda (see figure A.8).

22 Appendix A. What Can Be Computed?

q1
G
Ñ q1

G
Ñ q1

T
Ñ q2

T
Ñ q2

A
Ñ q3

ε
Ñ q4

z g
z

g
g
z

g
z

z a
z

z

(a) a stack-preserving subcomputation for GnTnA, before splitting

q1
G
Ñ q1

G
Ñ q1

T
Ñ q2

T
Ñ q2

z g
z

g
g
z

g
z

z
q2

A
Ñ q3

ε
Ñ q4

z a
z

z

(b) two stack-preserving subcomputations resulting from splitting (a)

Figure A.10: Example of splitting a stack-preserving subcomputation.

subcomputations that leave the stack undisturbed, and this motivates our
next definition.

A subcomputation is stack-preserving if the initial and final content of
the stack is identical, and none of the initial content is popped during the
subcomputation. Note that it is not enough for the final content to be the
same as the initial content: we insist that the content remains undisturbed,
so it is not permitted to pop any of the initial content during the subcom-
putation and replace it before the end. Figure A.9(c) shows an example of
a stack-preserving subcomputation for GnTnA, which consumes the string
“GGTT”. Note that any accepting computation automatically satisfies the
conditions for being a stack-preserving subcomputation, so figure A.9(a)
provides another example. Any single configuration is defined to be a trivial
subcomputation. Because it doesn’t disturb the stack, a trivial subcompu-
tation is also stack-preserving.

Splitting and peeling pda subcomputations

Stack-preserving subcomputations can be decomposed into simpler parts
via two operations that we will call splitting and peeling.

We tackle splitting first. Suppose that, at some point before the end of
the subcomputation, the stack returns to its initial condition. Then we can
split the subcomputation at that point, creating two shorter subcomputa-
tions. The configuration at the point of the split is duplicated, becoming
the end of the first component and the start of the second. Figure A.10
gives an example, where we split at the configuration in state q2, when the
stack first returns to its initial content z. Note that the components of a

Appendix A. What Can Be Computed? 23

q1
G
Ñ q1

G
Ñ q1

T
Ñ q2

T
Ñ q2

z g
z

g
g
z

g
z

z

(a) a stack-preserving subcomputation for GnTnA, before peeling

q1
G
Ñ q1

T
Ñ q2

g
z

g
g
z

g
z

(b) the stack-preserving subcomputation resulting from peeling (a)

Figure A.11: Example of peeling a stack-preserving subcomputation.

split are indeed always stack-preserving, because we split at a point where
the stack is in its initial condition.

Next, we move on to peeling. We peel a stack-preserving subcompu-
tation by removing its first and last configurations. Figure A.11 gives an
example. Note that if we applied the peeling operation a second time in
this example, we would be left with a trivial subcomputation. Obviously,
trivial subcomputations cannot be peeled.

It’s worth noting that peeling a stack-preserving subcomputation doesn’t
always result in a stack-preserving subcomputation. For example, what
would happen if we peeled the subcomputation in figure A.10(a)? The re-
sulting subcomputation would begin with the stack gz and end with stack
az. And even if the stack had ended with the same content, it’s possible
that the peeled version could disturb the stack while in one of its intermedi-
ate configurations. In fact, the importance of the peeling operation results
from the following property: if a stack-preserving subcomputation can’t be
split, then peeling it will result in another stack-preserving subcomputation.
We prove a more precise formulation of this fact in claim A.6 below. Nev-
ertheless, it would be a valuable exercise to prove it now, before reading
on.

A.5 Converting a pda to a cfg

In this section we complete our proof that pdas and cfgs are equivalent, by
showing that any pda can be converted to an equivalent cfg. We will first
give an explicit recipe for constructing the cfg; later, we will prove that this
cfg has the desired properties. Given a pda M in standard form, we will

24 Appendix A. What Can Be Computed?

denote the corresponding grammar by GM . We use as a running example
the case of M � GnTnA, where GnTnA is the pda in figure A.8. To describe
GM , we need to describe its variables (including a start variable), terminals,
and rules. The terminals are easiest so let’s start there: they consist of M ’s
input alphabet, with the blank symbol excluded. For GnTnA, this means
the terminals are G, T, and A.

Next we describe the the variables of GM . If GM has k states, then
there will be k2 variables: one for each ordered pair of states. Let us
to denote these by vi,j , where i and j run over all the possible states,
including qaccept. For GnTnA, there are 36 variables: v0,0, v0,1, v0,2, . . .,
v0,accept, . . ., vaccept,3, vaccept,4, vaccept,accept. Each variable will have a
very useful and important interpretation: the variable vi,j will generate all
strings that can be consumed by a stack-preserving subcomputation that
begins in state qi and ends in state qj . As an example, consider the variable
v1,2 in the grammar for GnTnA. This variable will turn out to generate all
strings of the form GnTn. The variable v2,4 will generate only one nonempty
string, “A”. And the variable v1,1 will generate only the empty string.
Note that v1,1 will not generate G, GG, GGG, and so on—these strings are
consumed by subcomputations that begin and end at q1, but none of these
subcomputations is stack-preserving. Is also worth emphasizing at this
point that this property of the vi,j is something we will have to prove later.
It has been mentioned now only to help with understanding and motivation.
But note that once we have proved the property, the variable v0,accept will
be particularly important: it will generate all strings that are consumed by
stack-preserving subcomputations that begin in q0 and end in qaccept. In
other words, v0,accept will generate precisely the language recognized by M .

Finally we must describe the rules of the grammar GM . There will be
a start rule and three other types of rules, which we call split rules, peel
rules, and vanishing rules.

The start rule is simple: it takes our usual start symbol s and maps it
to v0,accept. And as we just noted above, this will go on to generate the
language recognized by M . Formally, we have the rule

sÑ v0,accept.

The split rules are designed to acknowledge the fact that, at least in
principle, a subcomputation that starts at qi and ends at qj could visit
any other state qk on the way. So we need to allow for the possibility of
splitting such a subcomputation into two components: one from qi to qk
and another from qk to qj . Hence, we add all rules of the form

vi,j Ñ vi,kvk,j .

Appendix A. What Can Be Computed? 25

stack symbol pushes pops
a q2 Ñ q3 :A,ε;a q3 Ñ q4 : ε,a;ε

g q1 Ñ q1 :G,ε;g
q1 Ñ q2 :T,g;ε
q2 Ñ q2 :T,g;ε

z q0 Ñ q1 : ε,ε;z q4 Ñ qaccept : ,z;ε
(a) matching push-pop pairs for GnTnA

v2,4Ñ A v3,3
v1,2Ñ G v1,1 T
v1,2Ñ G v1,2 T

v0,acceptÑ v1,4
(b) peel rules resulting from the push-pop pairs in (a)

Figure A.12: Example of producing peel rules from matching push-pop
pairs.

In the example of GnTnA, which has 6 states, this gives us 63 � 216 split
rules. For example, the grammar will contain the rule v1,4 Ñ v1,2v2,4,
which will enable the split shown in figure A.10. Note that our construction
creates many more split rules than necessary. In the GnTnA grammar, for
example, it’s clear that a rule such as v3,1 Ñ v3,2v2,1 is useless, since there
isn’t even a path in the transition graph from q3 to q1. But it turns out
that these useless rules will not affect our proof, and it’s easiest to leave
them in the grammar rather than trying to calculate exactly which ones
will be needed.

The peel rules reflect the fact that some stack-preserving subcomputa-
tions can be peeled. Here, we will use the structure of M ’s transitions to
ensure that only legal peeling operations are reflected in the grammar. This
is done by creating peel rules only for M ’s matching push-pop transition
pairs, which were described earlier. And if any symbols are consumed by
the peeled transitions, we allow the rule to generate those symbols as ter-
minals. The details of how this works can difficult to absorb, so we give an
example first and then proceed to the general definition.

Recall from figure A.8 that we have four matching push-pop transition
pairs for the GnTnA pda. These matching push-pop pairs are reproduced
in figure A.12(a), except that non-blank symbols consumed from the input
tape have been highlighted in bold. The four matching pairs lead to four
corresponding peel rules in the grammar; these are shown in figure A.12(b).
For example, the first rule in figure A.12(b) originates from the matching
pair of an a-push and a-pop in the first row of figure A.12(a). We imagine
a possible stack-preserving subcomputation that begins with the a-push,

26 Appendix A. What Can Be Computed?

transitioning from q2 to q3 while consuming an A, and ends with the a-
pop, transitioning from q3 to q4. We apply the peel operation to this
subcomputation, giving us a new subcomputation that begins in q3 and
ends in q3. The new subcomputation is represented by v3,3, and its overall
effect will be the same as the original subcomputation, as long as we record
the fact that an A was consumed at the start. That explains the right-hand
side of the rule, A v3,3.

Similarly, the second rule in figure A.12(b) originates from the matching
pair consisting of a g-push (q1 Ñ q1) and g-pop (q1 Ñ q2). Peeling this
subcomputation results in a new subcomputation that begins in q1 and ends
in q1, but now we recorded the fact that a G was consumed at the start and
a T at the end. This yields the right-hand side of the rule, G v1,1 T.

The other rules originate from similar reasoning. The third rule mimics
the peeling operation shown in figure A.11, for example. One technicality is
in the final rule, where consuming a blank symbol is not explicitly recorded.
This is a minor detail, but it turns out to be the correct behavior because
we insist that pdas in standard form consume a blank if and only if they
are transitioning to qaccept.

The general procedure for creating peel rules follows this same pattern.
We create a peel rule for every matching push-pop transition pair in M .
Specifically, suppose we have a matching pair in which the push transitions
from qi to qj while consuming X, and the pop transitions from qk to ql
while consuming Y . Then we add the following rule to our grammar GM :

vi,l Ñ X vj,k Y.

In the GnTnA example, this leads to the four rules already discussed above
and listed in figure A.12(b).

Finally, we add the vanishing rules, which reflect the fact that a trivial
subcomputation produces an empty string. So for every state qi, we add
the rule

vi,i Ñ ε.

In the GnTnA example, this gives us the six rules v0,0 Ñ ε, v1,1 Ñ ε,

Overview of how the cfg operates

At this point, we have not proved anything about the properties of our
grammar GM . But hopefully it is already intuitively clear how the gram-
mar can mimic the operation of the pda M . The idea is that any accepting
computation can be broken down into simpler stack-preserving subcompu-
tations via splitting and peeling. These operations are applied repeatedly
until we are left with only trivial subcomputations, which disappear via

Appendix A. What Can Be Computed? 27

q0
ε
Ñ q1

G
Ñ q1

G
Ñ q1

T
Ñ q2

T
Ñ q2

A
Ñ q3

ε
Ñ q4 Ñ qaccept

ε z g
z

g
g
z

g
z

z a
z

z ε

(a) a computation accepting the input string “GGTTA”

s Ñ v0,accept use start rule
Ñ v1,4 peel the z-push/z-pop pair
Ñ v1,2 v2,4 split at q2
Ñ G v1,2 T v2,4 peel a g-push/g-pop pair
Ñ GG v1,1 TT v2,4 peel another g-push/g-pop pair
Ñ GGTT v2,4 eliminate trivial subcomputation at q1
Ñ GGTTA v3,3 peel the a-push/a-pop pair
Ñ GGTTA eliminate trivial subcomputation at q3

(b) derivation of the same string using the corresponding grammar

Figure A.13: Example of mimicking a computation on the pda M � GnTnA,
using the constructed grammar GM

the vanishing rules. As an example, consider the accepting computation by
GnTnA in figure A.13(a), which is duplicated from figure A.9(a). This com-
putation accepts the input string “GGTTA”. The corresponding grammar
can mimic this computation, as shown by the derivation in figure A.13(b).

Proof that the cfg operates correctly

We have explained how to construct a cfg GM from a pda M that is in
standard form. It remains to prove that M and GM are equivalent, i.e.
that M accepts a string if and only if GM generates it. However, it is
not easy to prove this directly. Instead, we will prove an even stronger
statement which tells us our interpretation of the symbols vi,j is in fact
correct. In detail, we would like to prove the following claim:

Claim A.6 Let M be a pda in standard form, and let GM be the cfg ob-
tained from M via the construction described above, so that GM possesses
the variables vi,j . Then vi,j generates the string of terminals S if and only
if M has a stack-preserving subcomputation that begins at qi, ends at qj ,
and consumes S.

Proof of the claim. We prove this claim by breaking it into two parts:
part 1 for the “if” and part 2 for the “only if.” Both parts use the technique

28 Appendix A. What Can Be Computed?

of mathematical induction, which has not been employed elsewhere in the
book, but is required here.

Part 1 of the proof. We assume that M has a stack-preserving subcom-
putation that begins at qi, ends at qj , and consumes S; we need to show
that vi,j generates S. We do this by induction on the length L of the sub-
computation, where the “length” is the number of transitions followed. It’s
worth noting that L is always even, since stack-preserving subcomputations
must consist of the same number of pushes and pops. The base case of the
induction is a trivial subcomputation, which by definition begins and ends
at a single state qi, has no transitions (i.e., L � 0), and consumes only the
empty string. Hence, the vanishing rule vi,i Ñ ε guarantees that the base
case holds.

Now we turn to the inductive step. We assume our statement holds for
all subcomputations of length at most L � 2, and attempt to prove it for
L (which we may assume is even). So, suppose we have a stack-preserving
subcomputation C of even length L ¥ 2 that begins at qi, ends at qj ,
and consumes S. There are two cases: either (i) C can be split, or (ii) C
cannot be split. To assist with visualization and understanding, consult the
examples of figure A.10 for case (i) and figure A.11 for case (ii).

Case (i): C can be split, say at qk, producing two smaller stack-preserving
subcomputations: C1 from qi to qk consuming S1, and C2 from qk to qj
consuming S2, where S � S1S2. Both C1 and C2 are strictly shorter than
C, so we can apply the inductive hypothesis to each separately. Hence, we
have that vi,k generates S1 and vk,j generates S2. Finally, by applying the
split rule vi,j Ñ vi,kvk,j , it follows that vi,j generates S1S2 � S, as desired.

Case (ii): C cannot be split. Let h be the height of the stack when C
begins and ends. Because C cannot be split, we know the height of the
stack is at least h � 1 after every transition except the last. (Otherwise,
we could split at the point where the height returned to h.) So the symbol
that C initially pushes onto the stack (say, a) remains undisturbed until
the very end of the subcomputation, when it is removed by a matching pop.
Hence, we can peel this matching pair and the resulting shorter computa-
tion will also be stack-preserving (with height at least h � 1 throughout
the computation). So we will be able to apply the inductive hypothesis to
the peeled computation. In detail, suppose C’s initial a-push transitions
from qi to qk consuming X, and suppose C’s final a-pop transitions from
ql to qj consuming Y . (Here, X and Y are either ε or symbols from the
input alphabet.) Then peeling C results in a shorter stack-preserving sub-
computation C 1 which begins in qk, ends in ql, and consumes S1, where we
must have S � XS1Y . Applying the inductive hypothesis to C 1, we obtain
that vk,l generates S1. Finally, by using the peel rule vi,j Ñ X vk,l Y , we

Appendix A. What Can Be Computed? 29

conclude that vi,j generates XS1Y � S, as desired. (Note that the peel rule
needed for this is actually present in the grammar, because of the matching
a-push/a-pop pair described above.)

Part 2 of the proof. We assume that vi,j generates S; we need to show
that M has a stack-preserving subcomputation that begins at qi, ends at
qj , and consumes S. We do this by induction on the length L of the
derivation that generates S, where the “length” is the number of rules that
are applied. For intuition and visualization in the remainder of the proof,
consult figure A.13.

First we deal with the base case of the induction. The shortest possible
derivation is a single application of a vanishing rule vi,i Ñ ε, so this is the
base case of the induction with L � 1. The trivial subcomputation at qi is
stack-preserving and consumes ε, so the base case holds.

For the inductive step, we assume the statement holds for all derivations
of length less than L, where L ¡ 1. We must show that the statement also
holds for derivations of length L. The first rule in the derivation is either
a split or peel, and we treat these two cases separately. (Why don’t we
consider the start rule or the vanishing rules? The start rule is irrelevant
because it doesn’t begin with a variable of the form vi,j . The vanishing
rules can occur first only when L � 1. So we are indeed left with only two
cases for the first rule: split or peel.)

Case (i): first rule application is a split. The first step must be of the
form vi,j Ñ vi,kvk,j , where vi,k generates some string S1, vk,j generates
some string S2, and S � S1S2. The derivations of S1 and S2 are shorter
than L, so we apply the inductive hypothesis to both, concluding that M
has stack-preserving subcomputations C1, C2 such that C1 goes from qi to
qk consuming S1, and C2 goes from qk to qj consuming S2. Concatenating
these computations together yields a stack-preserving subcomputation from
qi to qj that consumes S1S2 � S, as desired.

Case (ii): first rule application is a peel. Let R denote the peel rule
employed as the first step of the derivation. So R must be of the form vi,j Ñ
X vk,l Y , where X and Y are either ε or symbols from the input alphabet.
We also know that vk,l generates a string S1 such that S � XS1Y . The
derivation of S1 is shorter than L, so we can apply the inductive hypothesis
and conclude that M has a stack-preserving subcomputation C going from
qk to ql and consuming S1. The construction of the grammar guarantees
that rule R corresponds to a matching push-pop pair for some stack symbol,
say a. Therefore, M must possess an a-push that transitions from qi to qk
consuming X, and an a-pop that transitions from ql to qj consuming Y . We
can concatenate the a-push with the above subcomputation C and the a-
pop. This yields the desired stack-preserving subcomputation, completing

30 Appendix A. What Can Be Computed?

the proof. l

Finally, we can tie up the loose ends and use the previous claim to
understand the entire language generated by GM . In essence, the start rule
yields exactly the desired behavior. The proof below gives the details.

Claim A.7 Let M be a pda in standard form, and let GM be the cfg
obtained from M via the construction described above. Then the language
accepted by M is the same as the language generated by GM .

Proof of the claim. First we show that a string S accepted by M is
in the language generated by GM . Since S is accepted by M , there is an
accepting computation that consumes S. By definition, it is in fact a stack-
preserving subcomputation that begins at q0 and ends at qaccept. Applying
our previous claim A.6, we conclude that v0,accept generates S. And the
start rule of the grammar, s Ñ v0,accept, produces v0,accept. Hence GM
generates S.

Next we complete the proof by showing that if S is generated by GM ,
then M accepts S. The derivation of S must begin with the start rule,
meaning that v0,accept generates S. Applying our previous claim A.6, we
conclude that M has a stack-preserving subcomputation that begins at q0,
ends at qaccept, and consumes S. This is precisely an accepting computation
for S, and the proof is complete. l

A.6 Summary of computational power of au-
tomata

The previous section completed our proof that pdas (or more specifically,
npdas) recognize precisely the set of context free languages. As mentioned
in section A.1, the strict subset of the cfls recognized by deterministic pdas
is known as the deterministic context free languages. Although beyond the
scope of this book, the deterministic cfls are of great importance because
they can be parsed efficiently by compilers.

Figure A.14 combines the results of this chapter with the earlier ones,
summarizing which problems and languages can be decided or recognized
by the various computational models we have examined. Models listed in
any one row of the table have equivalent computational power, but each
row is strictly more powerful than the one above. The examples in the last
column demonstrate this by providing examples that cannot be recognized
by the model in the row above.

Appendix A. What Can Be Computed? 31

computational
model

languages decided
or recognized

example that can’t
be recognized by

row above

dfa, nfa
decide regular
languages

any regex, e.g., G�T�

dpda
decide deterministic
context free
languages

marked palindromes:
tGnCTnu

npda
recognize context
free languages

even palindromes:
tGnTnu

tm, ntm
decide any decidable
language

tGnTnAnu

Figure A.14: Summary of languages recognized and decided by different
computational models.

	Context free languages and push down automata
	Definition and examples of pdas
	Context free grammars
	Converting a cfg to a pda
	Subcomputations for pdas
	Converting a pda to a cfg
	Summary of computational power of automata

